
ForceMove: an n-party state channel protocol

Tom Close Andrew Stewart

Magmo Research
research@magmo.com

November 20, 2018

Abstract

The current scalability limitations of decentralized crypto-currencies,
like Bitcoin and Ethereum, are a major barrier to their wide-spread adop-
tion. Without a central authority, it is a challenge to maintain distributed
consensus while also achieving the throughput necessary to support ev-
eryday financial transactions. State channels help to reduce the volume
of on-chain transactions by enabling trustless, off-chain interactions be-
tween a fixed set of participants. In this paper, we present a state channel
framework capable of running a restricted set of n-party state channel ap-
plications. This restricted set is general enough to encompass many of the
common state channel applications, while keeping the framework simple
enough to be readily amenable to immediate development. As a proof of
concept, we implement the protocol for the 2-party case on Ethereum.

1

mailto:research@magmo.com


Contents
1 Introduction 3

1.1 State channel overview . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Disputes and resolutions . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 ForceMove . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.5 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Informal introduction to ForceMove 7
2.1 Collaborative play . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Defining game rules . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Force-move and resolution . . . . . . . . . . . . . . . . . . . . . . 10
2.4 Responding to a force-move . . . . . . . . . . . . . . . . . . . . . 11
2.5 Payment channels . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 ForceMove games when collaborating 12
3.1 Game objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Game mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4 ForceMove games when not collaborating 26
4.1 Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2 The adjudicator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.3 Playing the force-move . . . . . . . . . . . . . . . . . . . . . . . . 28
4.4 Responding to a force-move . . . . . . . . . . . . . . . . . . . . . 29
4.5 Extensions to the ForceMove protocol . . . . . . . . . . . . . . . 33

5 Funding ForceMove games 34
5.1 Non-funded games . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.2 Simple funding . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.3 Ledger channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.4 Virtual channels . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.5 Withdrawal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

6 The simple adjudicator 37
6.1 Internal storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
6.2 Deployment and depositing funds . . . . . . . . . . . . . . . . . . 39
6.3 Withdrawing funds . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2



1 Introduction

The recent rise in the popularity of cryptocurrencies has highlighted their cur-
rent scalability limitations. The requirement to keep block processing and trans-
mission times small, relative to the block creation time, leads to an inherent
limit to the number of transactions that a block can contain, in both Bitcoin
and Ethereum. In Ethereum, the maximum transaction rate is approximately
15 transactions per second across the entire network [1]. When the volume of
transactions surpasses the network capacity, the consequences can be disastrous
for those trying to use the cryptocurrency for everyday transactions, as was seen
with Bitcoin in Dec 2017, when the average transaction fee exceeded $50 [2] and
average confirmation times were longer than an hour [3]. When benchmarked
against the visa card network, which can handle over 50,000 transactions per
second [4], it becomes clear that scaling solutions are needed if Ethereum is to
achieve widespread adoption.

Payment channels and state channels represent one solution to this scalabil-
ity problem. Both these approaches reduce the volume of on-chain transac-
tions, by enabling trustless, off-chain interactions between a fixed set of partic-
ipants.

1.1 State channel overview

A state channel can be thought of as a protocol for dividing a predetermined set
of assets between a predetermined set of participants, using the blockchain to
avoid requiring mutual trust or a trusted third party. Although the blockchain
is integral to the security of the setup, the protocol is designed so that the
participants are able and incentivized to perform the majority of the operations
off-chain.

In order for state channel interactions to be trustless, the assets in question must
be locked in an on-chain contract, and only accessible through the outcome of
the state channel. These locked assets are often referred to as the state deposit
in the literature.

Once the state deposit is in place, the interaction proceeds with participants
exchanging cryptographically signed messages off-chain. Under normal opera-
tion, one player proposes a state update by broadcasting a signed copy of their
desired state transition. The state progresses when all other participants sign
the new state.

When the interaction is over one or more participants can present what they
claim to be the latest agreed state to the blockchain. This typically starts a
timeout period to allow other participants to submit a later state, if one exists.
Once the timeout period has elapsed, the blockchain divides the assets according
to the final state.

3



1.2 Disputes and resolutions

A dispute occurs when one or more players refuse to sign the new state. When
a dispute occurs, the resolution process can be started on-chain. The process
starts with a submission phase, where participants are invited to submit data
that will be used by the adjudicator when resolving the dispute. There is typi-
cally a predefined duration for this phase. If the dispute is not resolved during
the submission phase, the adjudicator releases funds according to the resolution
specified by the most recently known state at the time of the dispute.

The security of a state channel system comes from the ability of the players to
reason about how the blockchain will resolve their disputes: if you know that
the signed agreements you hold will allow you to enforce a particular outcome
via the blockchain, then you can consider the current state to be in some sense
equivalent to that outcome. This sort of reasoning forms the basis for the
counterfactual techniques, introduced in [5].

The on-chain dispute resolution behaviour is highly dependent on the kind of
disputes that it must handle. Here we categorise the disputes into 3 broad
classes, each of which capable of preventing the transition to a new agreed
state:

External state disputes can occur when state-channel transitions are depen-
dent on properties external to the state that change with time. As long as
an interaction proceeds off-chain, the only notion of time, and subsequently
time-dependent properties, is the time which all participants agree on. If
Alice claims that, at the time she sent Bob her state update, the ETH-USD
exchange rate was x and he refuses to sign the new state, she has no choice
but to go to the chain - and to go to the chain quickly before the value of
x changes significantly.

Conflicting move disputes occur when players send conflicting updates.
For example, in a payment channel Alice might try to update the state to
(4, 6) at exactly the same time that Bob tries to update it to (6, 4). As
discussed in the previous point, the lack of an undisputed clock means that
they cannot tell which of these updates was first. In the general case, the
resolution function needs to be able to accept a set of conflicting updates
and decide how the state should progress.

Inactivity can be viewed a dispute in the sense that it prevents the overall
state from progressing. This case also covers sending invalid state updates,
which are viewed by the protocol as equivalent to not sending any update.
Inactivity covers a range of different situations that cannot in general be
distinguished by the blockchain. At one end of the range, inactivity could be
due to a lack of connectivity or the loss of the keys needed to sign states. At
the other inactivity could be a deliberate strategy to avoid signing updates
that are not in the player’s interest. In both cases it is important that the
state can progress on-chain, so that the funds of the active players are not

4



locked indefinitely.

As we will explain shortly, the ForceMove protocol manages to completely rule
out the first two types of dispute here, by restricting the set of applications that
it can support.

1.3 ForceMove

In contrast to fully general state channel protocols, ForceMove has the property
that the outcome of the resolution in any state is straightforward to calculate
and does not change with time. To accomplish this we make two important
restrictive choices in the protocol. Firstly we store the resolution properties
on the channel states themselves, which removes disagreements due to external
states.1 In doing this, we naturally introduce significant restrictions on the
types of application that the protocol will support.

Secondly, we specify that participants must take turns signing states. This
removes any disagreements that could arise due to conflicting moves, as it is
always completely defined whose move it is. This again likely introduces some
restrictions on the types of application that the protocol will support, but in
practice it seems as though these can mostly be mitigated by adapting the design
of applications.

Once we rule out the first two types of agreement, we’re left with the inactiv-
ity case. We handle this with the force-move operation, which the protocol is
named after. If an opponent is inactive, a participant can issue a force-move
operation on-chain, which will wait a predetermined length of time for the op-
ponent to respond and otherwise terminates the game so that the assets can be
withdrawn.

1.4 Related work

The most well-known payment channel implementation is the Bitcoin lightning
network [6], which recently launched on the mainnet. The network handles the
routing of multi-hop payments across a distributed network of nodes, secured
using the hashed time-locked contracts (HTLCs) approach [7]. The Raiden
network [8] is working on bringing the same idea to Ethereum.

The enhanced smart contract capabilities of the Ethereum blockchain open
up additional capabilities when compared to Bitcoin. The sprites paper [9]
used this fact to increase the efficiency of HTLC multi-hop payment channels
on Ethereum. The Perun protocol [10, 11] introduces the concept of virtual
channels, an alternative approach to enabling unconnected parties to interact

1 This is semantically equivalent to having a pure resolution function.

5



through one or more intermediaries, which readily supports state channel inter-
actions. The work is key to the efficacy of state channels as a scaling solution,
by allowing a large proportion of state channels to be opened and closed without
an on-chain transaction.

1.5 Notation

Due to the inherent complexity in dealing with on-chain and off-chain state, we
will be using the following pseudocode notation throughout the paper, which
allows us to go beyond functions and specify Structs and Types:

Pseudocode notation
// Struct definition
struct StructName contains

memberName: MemberType
otherMemberName: OtherMemberType

end

// Method definition
StructName::methodName: input 7→ output

// Function definition
function functionName(arg: Type1, arrayArg: Type2[])

returns (returnType)
Require(someCondition)
// Implementation
return returnValue

end function

As you can see, we allow our Structs to have convenience methods defined
on them. These methods are all simple “getter” methods, returning properties
that can be easily calculated from the attributes stored on the Struct. All
state-modifying actions will be performed by functions.

We use the convention that Types and Structs are capitalized, while attributes,
methods, and functions are not.

This paper starts with an informal introduction to the ForceMove protocol in
Section 2, which uses Rock Paper Scissors [12] as an example. Sections 3 and
4 give a formal description of the protocol, and then the final sections cover
approaches for funding the games.

6



2 Informal introduction to ForceMove

The ForceMove protocol prescribes a format for the off-chain agreements and
specifies the rules surrounding how these agreements will be interpreted by the
on-chain adjudicator. It also specifies the interface that application developers
should adhere to when writing the bespoke code that will power their applica-
tion.

As a way of introducing the protocol, we will start by presenting an example
application and detailing some of the main interactions that can happen between
the two players playing the game. For the example, we will demonstrate how
to implement the well-known game of Rock Paper Scissors [12] as a ForceMove
game.

2.1 Collaborative play

In this section, we will show how the game progresses during collaborative play
- when both players behave cooperatively and exchange signed agreements off-
chain.

The real-world game involves two players simultaneously picking a move. In the
ForceMove implementation, we will use a commit-reveal strategy to simulate
this, where one player commits to a value beforehand and then only reveals
their choice once the other player’s choice is known.

In our implementation, each round of the game will pass through four different
stages: RPS.Resting, RPS.Propose, RPS.Accept, and RPS.Reveal. The states
for each stage will have different attributes. Instead of trying to define all
the different attributes, we will give an example of the states that would be
exchanged during a round of the game played between Alice and Bob.

We will assume that we start in a position where Bob has just signed and sent the
RPS.Resting state to Alice. It could be that Alice and Bob have just entered
the game from the setup phase, which we’ll cover later, or they might have
just finished a previous round. To arrive in this position, Alice and Bob will
have deployed an on-chain adjudicator contract and will each have deposited a
sufficient amount to fund the game.

Alice

RPS.Resting {
turnNum: 5,
aResolution: 5,
bResolution: 4

} Bob

The states we show here are slightly simplified. In particular, we omit the
protocol attributes that appear in every single state, which we will cover in detail
in Section 3.1.3. In the state above aResolution and bResolution represent
the funds that Alice and Bob would respectively receive if the game were to

7



end in the current state. The turnNum increases as each move is played. Note
that the turnNum starts at 5 in this example, to reflect the fact that previous
moves were necessary to get Alice and Bob into the starting position for our
game.

Alice kicks off the round by signing and sending the RPS.Propose state to Bob.
In doing this, she chooses a stake that the winner will receive from the loser.
The resolution does not update at this point, as Bob has not yet agreed to the
new round. She also provides the preCommit, which she calculates by hashing
her choice, rock, with a random string, xyz:

Alice

RPS.Propose {
turnNum: 6,
aResolution: 5,
bResolution: 4,
stake: 2,
preCommit: h(rock, xyz)

}

Bob

Bob then decides whether to accept the round or not. If he did not want to
accept, he would sign and send back the same resting state as he sent in the
beginning, apart from an increased turnNum. If he does want to accept, he signs
the RPS.Accept state, providing his choice, in this case scissors:

Alice

RPS.Accept {
turnNum: 7,
aResolution: 3,
bResolution: 6,
stake: 2,
preCommit: h(rock, xyz),
bPlay: scissors

}

Bob

Note that, at part of this transition, Bob has updated the resolution as though
he had won: removing an amount of stake from aResolution and applying
it to bResolution. This change is specified by the rules of the game and is a
crucial part of making the game game-theoretically sound. The risk here is that
once Alice receives this state, she knows whether she has won or not but no-one
else does. Without the added incentive of Bob being the default winner in this
position, it could be in Alice’s interest to end the game at this point, by refusing
to reveal the outcome.

The next step is for Alice to reveal her value. To do this she signs the RPS.Reveal
state, which reveals her choice. She also provides the salt used in the pre-
commit, so that Bob can verify that she has not changed her choice:

8



Alice

RPS.Reveal {
turnNum: 8,
aResolution: 7,
bResolution: 2,
bPlay: scissors,
aPlay: rock,
salt: xyz

}

Bob

Alice has also updated the resolution to reflect the fact that she is the winner
of the round.

Bob then completes the round by signing the RPS.Resting state.

Alice

RPS.Resting {
turnNum: 9,
aResolution: 7,
bResolution: 2

} Bob

Now they are back in the RPS.Resting state, Alice is free to propose another
round if she wishes. As it stands, this is all she can do. We’ll talk about how
to add a way to conclude the game in Section 3.2.3.

2.2 Defining game rules

For each of the interactions described above, the protocol must be able to judge
whether the message sent was valid or not. In order meet this requirement, the
application developer deploys an on-chain library containing the rules of the
game, which specifies which transitions are valid. This library only needs to be
deployed once (and not once per game played) and the address it is deployed at
can be used to unambiguously define the game being played in a channel.

A lot of the transition rules are fairly straight-forward. In the Rock Paper Scis-
sors case they would include making sure that players do not change their plays
or the stake, and that the resolution updates appropriately, according to the
state. For example, the transition rules for the RPS.Propose 7→ RPS.Accept
transition are as follows:

• aResolution := aResolution - stake
• bResolution := bResolution + stake
• stake shouldn’t change
• preCommit shouldn’t change
• bPlay is one of rock/paper/scissors

In order to specify these rules, the game library must have a validTransition
function that takes two states and returns true if the transition from one state
to the other is valid.

9



2.3 Force-move and resolution

So far we have only looked at the case where Alice and Bob behave coopera-
tively. In general, we cannot assume that this will be the case. For example,
a player might not be able to cooperate due to a loss of their internet connec-
tion or signing key. As we have already seen, it could also be that a player
is incentivised not to cooperate, as a given transition is not in their economic
interest. In both these cases, we need to make sure that the other player has
the capability to reclaim the fair amount of funds according to the current state
of the game.

As an example, we’ll look at the RPS.Accept 7→ RPS.Reveal transition. In our
example above, the revealer (Alice) knew that she had won the game, so it was
clearly in her interest to reveal that fact to claim her winnings from Bob. If
Alice hadn’t won, she might have been tempted to stall the game, preventing
Bob from claiming his winnings.

We’ll look at the case where Bob has just sent the following RPS.Accept state
to Alice but Alice has not responded in some time:

Alice

RPS.AcceptRound {
turnNum: 7,
aResolution: 3,
bResolution: 6,
stake: 2,
preCommit: h(rock, xyz),
bPlay: scissors

}

Bob

In this case, Bob can go to the blockchain to force Alice to continue the game. To
do this he calls the forceMove operation on the on-chain adjudicator contract,
which exists from the game setup phase:

Adjudicator.forceMove(RPS.Propose{...}, RPS.Accept{...}) (1)

Note that Bob provides both the last state signed by Alice and the last state he
signed. This is in accordance with the idea that state channels only progress by
complete consent of the participants: Bob needs signatures from both parties to
launch a challenge. In calling this method, he lays down the following challenge
to Alice:

Bob: Alice, you moved to RPS.Propose, after which I moved to RPS.Accept.
Now it’s your turn to move!

When Bob plays the force-move, a deadline is set for Alice to respond. If this
deadline expires before Alice responds, the resolution stored on the challenge
state s will decide how the funds should be split:

s.resolution #=> {aResolution: 3, bResolution: 6} (2)

10



Not that the state resolves as though Bob has played the winning move. As
discussed earlier, this is because the only fair resolution in the RPS.Accept
state is to award all the stake to the non-revealer – otherwise the revealer would
always be incentivised to stall when they had not won.

A game diagram is a useful way of bringing together all the pieces of the game
that an application developer must specify. Fig 1 shows the game state diagram
for the Rock Paper Scissors game.

RPS.Resting {
aResolution: 5,
bResolution: 4

}

Signed B

RPS.ProposeRound {
aResolution: 5,
bResolution: 4,
stake: 1,
preCommit: h(rock, xyz)

}

Signed A

RPS.AcceptRound {
aResolution: 4,
bResolution: 5,
stake: 1,
preCommit: h(rock, xyz),
bPlay: scissors

}

Signed B

RPS.Reveal {
aResolution: 6,
bResolution: 3,
stake: 1,
bPlay: scissors,
aPlay: rock,
salt: xyz

}

Signed A

Figure 1: Game diagram for a basic 2-player ForceMove formulation of Rock
Paper Scissors. Allowed transitions are shown with solid arrows.

2.4 Responding to a force-move

If Alice wants to avoid ending the game according to the challenge state’s res-
olution, she can respond to the force-move operation. There are several ways
to respond to a force-move, which will be covered comprehensively in Section
4.4. In this case, we’ll cover the most straight-forward of these options: the
respondWithMove response.

In responding with a move, Alice answers Bob’s force-move as follows:

Bob: Alice, you moved to RPS.Propose, after which I moved to RPS.Accept.
Now it’s your turn to move!

Alice: Ok, Bob. Here’s my move to the RPS.Reveal state.

Alice performs this action by calling the respondWithMove method on the on-

11



chain adjudicator.

Adjudicator.respondWithMove(RPS.Reveal{...}) (3)

The adjudicator will check that Alice’s response represents a valid transition
according to the rules of the game and, if it does, cancel Bob’s outstanding
force-move challenge.

By responding with a move, Alice has provided the exact state that she would
have done if she had sent the move directly to Bob off-chain. Alice and Bob are
therefore now in the exact same situation as if the force-move had not happened
and Alice had behaved cooperatively off-chain. They can therefore now continue
to play the game off-chain.

2.5 Payment channels

The payment channel is an important example for any state channel protocol.
In this section, we show how to implement a payment channel as a force-move
game.

The payment channel game is very simple, involving only the resolution fields,
which record how much each player will receive if the game ends in a given
position. The transition rules are designed to implement the rule that you
should never unilaterally be able to take funds from your opponent, but you
should be able to unilaterally give funds to your opponent.

Figure 2 shows the game diagram for a 2-player force-move implementation of
a payment channel with capacity 2 wei. The 2 wei capacity was chosen to make
it possible to easily enumerate all the possible outcomes when producing the
game diagram. The game library is specified in Specification 1. The code for a
payment channel is significantly more succinct than the diagram!

Specification 1 Two-player payment game

function PaymentGame.validTransition((s1: State, s2: State))
returns (Boolean)
Require(sum(s1.resolution) == sum(s2.resolution))
i := s1.indexOfMover
Require(s1.resolution[i] ≥ s2.resolution[i])

end function

3 ForceMove games when collaborating

In this section we will describe the protocol that specifies n-player ForceMove
games, treating the situation when the players are behaving collaboratively, so
that the game can progress off-chain.

12



PG.InPlay {
aResolution: 2,
bResolution: 0

}

Signed B

PG.InPlay {
aResolution: 1,
bResolution: 1

}

Signed B

PG.InPlay {
aResolution: 0,
bResolution: 2

}

Signed B

PG.InPlay {
aResolution: 2,
bResolution: 0

}

Signed A

PG.InPlay {
aResolution: 1,
bResolution: 1

}

Signed A

PG.InPlay {
aResolution: 0,
bResolution: 2

}

Signed A

Figure 2: Game diagram for a 2-player ForceMove formulation of a payment
channel with a capacity of 2 wei. The rules of the payment game have been
designed to respect the principle that you should never unilaterally be able to
take funds from your opponent, but you should be able to unilaterally give
funds to your opponent. For example, from the state in the top-left A has three
choices: (1) give 0 to B, (2) give 1 to B, (3) give 2 to B. In all of these cases,
B gains the ability to make the next move. By contrast if the game is in the
top-right, A has only one option: to give 0 to B. Each state stores the current
values of aResolution and bResolution. Additional state attributes, such as
turnNum, have been omitted for brevity.

3.1 Game objects

3.1.1 Channels

A channel, γ, can be thought of as a container in which a ForceMove game is
played. Every move made will contain a reference to a channel, and it is through
the channel that we identify them as being moves made in the same instance
of a given game. Note that a channel is completely unrelated to the method of
communication used by the parties.

Specification 2 Protocol specification
struct Channel contains

channelType: Address
participants: Address[]
channelNonce: uint

end
Channel::id c 7→ h(c.gameType, c.participants, c.channelNonce)
Channel::numberOfParticipants c 7→ c.participants.length

where h is a cryptographic hash function, such as the keccak256 hash used by
ethereum [13]. The resulting channelId is designed to uniquely identify the

13



channel.

The channelType specifies the rules of the game being played in the channel. In
practice, the channel type would be an address of the on-chain location where
the rules of the game can be found.

The participants is a list of parties participating in the game. In practice,
this would be a list of addresses corresponding to the keys which the parties are
using to sign their states. The position of the parties in the list is significant and
can be used by games to assign different roles to different participants, which
can affect the moves they are allowed to make.

The channelNonce is a value chosen so that the channelId is unique. In order
to meet this requirement, it is necessary for participants to keep track of some
information about the games they’ve played with each opponent. In practice,
this requirement is relatively small: it is sufficient for each opponent to just
store the highest channel nonce used so far2.

All players must take responsibility for ensuring that the nonce is chosen to
make the channel id unique. A failure to do so can lead to funds being lost due
to replay attacks from the previous channel. If the channel id is not unique,
players should refuse to join the channel.

3.1.2 Outcomes

ForceMove games are typically played with some assets at stake; the whole
purpose of the protocol is to enable the distribution of assets to be tied to
the trajectory of the game, without requiring trust between the participating
parties. We will refer to the split of assets at the end of the game, as the outcome
of the game. As we will cover in later sections, outcomes can be obtained
collaboratively, off-chain, through the conclusion process, or non-collaboratively,
on-chain, through the challenge process.

In the most general case, an outcome consists of a list of addresses and the
assets that the game has allocated to them. We say that a ForceMove game, g,
is closed if, in all possible outcomes, it only allocates funds to the participants
of its channel. Otherwise, we say that the game is open.

For the purposes of this paper, we will assume that we are working with a closed
game, on a single (fungible) asset. This allows us to specify the outcome us-
ing an array, outcome, of length γ.numberOfParticipants, where outcome[i]
represents the amount of coin to be distributed to participants[i]. In gen-
eral, this will not be the case though and therefore we define an Outcome type,
to make it clear exactly where the protocol can be modified to support more
complicated setups.

2 In the case where this total reaches the maximum allowed value, to start afresh with a
new set of keys

14



Protocol specification – cont’d
// for the purposes of this paper
type Outcome := Uint[]

3.1.3 Moves and states

The state of a ForceMove game is advanced when one participant makes amove.3
A move consists of a State and a (cryptographic) signature.

Protocol specification – cont’d
struct Move contains

state: State
signature: Signature

end
Move::channelId: m 7→ m.state.channelId
Move::signer: m 7→ m.signature.signer

From the signature you can deduce the signer – the participant who signed the
move. The game state is advanced if the signed state they send represents a
valid transition. If not, the update is ignored, leading to the general principle
that making an invalid move is equivalent to not making any move at all.

The protocol defines multiple types of State, which all have some attributes in
common:

3 When we say a player “makes a move” or “signs a state”, we implicitly mean that the
player broadcasts the move, or signed state, to all other players.

15



Protocol specification – cont’d

type State := PreFundsetupState |
PostFundsetupState |
GameState |
ConcludeState

struct *State contains
// attributes shared by all states
channel: Channel
turnNum: Uint
resolution: Outcome

// state-type specific properties specified in Section 3.2
// ... omitted ...

end

State::nParticipants: s 7→ s.channel.participants.length
State::mover: s 7→ s.channel.participants[s.turnNum%s.nParticipants]
State::channelId: s 7→ s.channel.id

The turnNum introduces an ordering on the states. As explained in the following
section, the game rules specify that the turnNum must increase as the game
progresses.

The resolution specifies the Outcome that would occur if the game were to
end in this state. Determining the resolution in each state is an important part
of game design.

Note that the definition of State::mover introduces an important design deci-
sion of the ForceMove protocol: that the mover is fully determined by the turn
number. Informally, using the fact that s.turnNum must be incremented by 1,
this rule states that players must take turns in a cyclical order.

States also have nParticipants and channelId attributes inherited from their
members.

Beyond these shared attributes, different states in the same game can and will
contain different sets of attributes. The different state types are covered in more
detail in Section 3.2

3.1.4 Valid moves and transitions

For a move to be valid, the following conditions must hold:

16



Protocol specification – cont’d

function validMove(fromMove: Move, toMove: Move)
returns (Boolean)

Require(validTransition(fromMove.state, toMove.state))
Require(toMove.state.mover == toMove.signer)

return true
end function

The first of these rules ensures that a valid move requires a valid state transi-
tion. The second says that the move must be signed by the moving player as
determined from the state’s turnNum.

The validTransition function consists of some universal rules, as well as some
rules that are dependent on the types of states that are involved.

Protocol specification – cont’d

function validTransition(fromState: State, toState: State)
returns (Boolean)

Require(toState.channelId == fromState.channelId)
Require(toState.turnNum == fromState.turnNum + 1)

// state-type specific logic specified in Section 3.2
// ... omitted ...

end function

The first of these two rules specifies that no details of the channel can change
within a game: the channelType, channelId, or participants must all remain
the same.

The second states that the turn number must increment. The turnNum therefore
introduces an ordering on the set of moves, where moves with a higher turnNum
are recognised as later than states with a lower turnNum.

3.1.5 Alternative moves

Nothing in the conditions prevents a player from signing multiple valid moves
with the same turnNum. In general, it is impossible to prevent a player from
signing and transmitting more than one move if they choose to; it is therefore im-
portant to be explicit about how to handle this situation in the protocol.

17



In a ForceMove game, if there exist multiple valid moves in the game with the
same turn number, we refer to these moves as alternative moves. In providing
alternative moves, the player gives the next player the right to choose the move
they want to progress from. A player therefore theoretically does not gain
anything by making multiple moves, though the ability to make multiple moves
can be useful in practice in the design of some games (see Fig. 3).

We refer to the set of moves with a single turnNum as a turn.

PG.InPlay {
aResolution: 2,
bResolution: 0

}

Signed B

PG.InPlay {
aResolution: 1,
bResolution: 1

}

Signed B

PG.InPlay {
aResolution: 0,
bResolution: 2

}

Signed B

PG.InPlay {
aResolution: 2,
bResolution: 0

}

Signed A

PG.InPlay {
aResolution: 1,
bResolution: 1

}

Signed A

PG.InPlay {
aResolution: 0,
bResolution: 2

}

Signed A

(a) (b) (c)

Figure 3: Payment channel with alternative moves. One example of a game
where alternative moves can be useful is the payment channel. In a payment
channel, it is very easy to reason about which of set of alternative moves will be
accepted: we can assume that the opponent will always accept the move which
leads to the biggest increase in their total, which is easy to assess when only one
currency is involved. In this case, we can make the exchange more efficient by
exploiting the ability to make alternative moves. For example if the game was
in the state {A : 2, B : 0} with A to move, A could move to {A : 1, B : 1} and
then later move to {A : 0, B : 2} without having to wait for B to counter-sign
{A : 1, B : 1}.

3.2 Game mechanics

In this section, we look in more detail at the different types of state, and the
valid transitions between them. it is worth emphasising that everything in this
section still assumes collaborative behaviour, where the game progresses off-
chain; the non-collaborative, on-chain dispute process will be covered in Section
4.

3.2.1 Game overview

A game begins when a player, known as the starting player, broadcasts a
PREFUNDSETUP state to the desired participants of the game. Each player fol-
lows in turn by signing a transition to the subsequent PREFUNDSETUP state,

18



n states

PreFundSetup

n states

PostFundSetup

arbitrary number of states

Game

n states

Conclude

Funding

Figure 4: Overview of the stages of collaborative play in the “happy path” case.
Note that the allowed transitions from PRE/POSTFUNDSETUP 7→ CONCLUDE are
omitted from the diagram.

until n = numberOfParticipants states have been signed, completing the
PREFUNDSETUP round.

Loosely speaking, the PREFUNDSETUP phase is the opening handshake that estab-
lishes that all players want to start a particular game, with a specified amount
of funds and a specified starting position. By the end of the PREFUNDSETUP
phase, every player should hold a set of n signed PREFUNDSETUP states – one for
each player in the game. This is exactly what they need to launch a challenge
on-chain to recover their funds if one of their opponents stall (see Section 4.3
for further details). Thus the PREFUNDSETUP rounds provides each player with
the guarantees they need to be able to safely commit funds to the game.

Game funding is decoupled from the game mechanics, and will be discussed
in more detail in Section 5. For the purposes of this section, you can assume
that the funding step involves each player making an on-chain transaction into
an on-chain adjudicator contract, in a pre-defined order, proceeding only when
they have verified that all players before them have deposited.

After the game has been funded, the starting player starts the POSTFUNDSETUP
round, by signing the first POSTFUNDSETUP state. The other players respond by
signing their own POSTFUNDSETUP states in order, thus completing the POSTFUND-
SETUP round. In signing their POSTFUNDSETUP state, each player is stating that
sufficient funds have been deposited to start the game. If this is not the case,
the player can instead sign a CONCLUDE state, indicating that they no longer
wish to participate in the game. We discuss this further in Section 3.2.6.

On the starting player’s third turn, they must transition from an POSTFUNDSETUP
state to a GAME state. Players may then continue to move to GAME states until
the game is complete, which in general takes an arbitrary number of turns.
When someone wishes to gracefully end the game, they move to a CONCLUDE
state.

Once a player has moved into the conclude mode, each remaining player signs a
CONCLUDE state. After each player has signed such a CONCLUDE state, the game is
considered finished, and any player can form a conclusion proof. The conclusion
proof may be registered on the adjudicator, as described in Section 4.4.4.

19



The validTransition function is used to enforce the structure defined above.
To show how, we will now provide the complete specification of the valid-
Transition function, which was first introduced in Section 3.1:

Protocol specification – cont’d

function validTransition(s1: State, s2: State)
returns (Boolean)
Require(s2.channelId == s1.channelId)
Require(s2.turnNum == s1.turnNum + 1)

if s1.stateType == PREFUNDSETUP then
return validTransitionFromPrefundsetup(s1, s2)

else if s1.stateType == POSTFUNDSETUP then
return validTransitionFromPostfundsetup(s1, s2)

else if s1.stateType == GAME then
return validTransitionFromGame(s1, s2)

else if s1.stateType == CONCLUDE then
return validTransitionFromConclude(s1, s2)

end if
end function

In the rest of this section, we will dig into each phase of the game in more detail.
We will abandon the chronological order as used above, starting first with the
GAME states, as these are the most interesting part of the protocol. We will then
proceed with the CONCLUDE states, before finishing with the PRE/POSTFUNDSETUP
states, which are the most technical.

3.2.2 The GAME stage

The GAME states have the following properties:

Protocol specification – cont’d
struct GameState contains

channel: Channel
turnNum: Uint
resolution: Outcome
gameAttributes: Byte[]

end
GameState::stateType: s 7→ Game

In addition to the universal channelId, turnNum and resolution fields, the
GAME states contain a gameAttributes field. The gameAttributes, along with

20



their encoding into a Byte[] array, which must be specified by the GameLi-
brary.

The Game Library is an on-chain contract, which specifies the application-
specific attributes and logic for a ForceMove game. The Game Library need
only be deployed once, and the address of the deployed contract can then be
used to uniquely define the game being played.

In order to conform to the protocol interface, the Game Library needs to imple-
ment a single function the GameLibrary.validTransition function:

Protocol specification – cont’d

function GameLibrary.validTransition(s1: State, s2: State)
returns (Boolean)
// written by the application developer

end function

As one of the simplifications in this protocol, we enforce that the
GameLibrary.validTransition function must be pure – it can only depend
on the properties of states passed in, and cannot read from or write to the
blockchain.

The GameLibrary.validTransition function is used by the protocol’s
validTransition function as follows:

Protocol specification – cont’d

function validTransitionFromGame(s1: State, s2: State)
returns (Boolean)
if s2.stateType == GAME then

Require(GameLibrary.validTransition(s1, s2))
else

Require(s2.stateType == CONCLUDE)
Require(s2.resolution == s1.resolution)

end if
return true

end function

Once the starting player has moved to the GAME phase, players may subsequently
make GAME moves according to the rules specified by the game developer in
GameLibrary.validTransition.

From each GAME state, s, we also allow a transition to a CONCLUDE state, s′,
where s.resolution == s′.resolution. This is a pragmatic decision: if a
player wanted to end the game on their turn, they always have the option of
stalling, forcing another player to play a force-move and ultimately ending the

21



game on-chain, resulting in an outcome of the the current state’s resolution.
Given that this possibility always exists, it is reasonable to give the player a
way to accomplish the same outcome collaboratively, off-chain,saving the time
and expense of an on-chain challenge.

3.2.3 The CONCLUDE stage

The CONCLUDE states are the simplest of all states in the protocol, containing
nothing beyond the universal properties:

Protocol specification – cont’d

struct ConcludeState contains
channel: Channel
turnNum: Uint
resolution: Outcome

end
ConcludeState::stateType: s 7→ Conclude

The CONCLUDE states are governed by the following transition rules:

Protocol specification – cont’d

function validTransitionFromConclude(s1: State, s2: State)
returns (Boolean)
Require(s2.stateType == CONCLUDE)
Require(s2.resolution == s1.resolution)
return true

end function

Once the game is a CONCLUDE state s, players may only move to another CONCLUDE
state s′.

The purpose of the CONCLUDE states are to construct a conclusion proof – a
statement by all players of the game that the game is over. Conclusion proofs
can be registered on-chain, as described in Section 4.4.4.

A (valid) conclusion proof is a sequence of n valid, signed CONCLUDE states. The
validity can be checked with the validConclusionProof function.

22



Protocol specification – cont’d
struct ConclusionProof contains

moves: Move[]
end

function validConclusionProof(proof: ConclusionProof)
returns (Boolean)
moves := proof.moves
firstMove := moves[0]
Require(firstMove.state.stateType == CONCLUDE)
n := firstMove.state.nParticipants
Require(n == moves.length)
for k in 0...n− 2 do

Require(validMove(moves[k], moves[k+1]))
end for
return true

end function

Because the only valid transition from a CONCLUDE state is to another CONCLUDE
state, the two checks taken together ensure we have a sequence of n consecutive
CONCLUDE states and therefore a ConclusionProof.

In terms of the overall game, once a player has moved to a conclusion state,
they should behave as though the game could conclude at any point, as they no
longer have the ability to prevent a conclusion proof from being created.

3.2.4 The PREFUNDSETUP stage

States of type PREFUNDSETUP serve as agreements about how the game should
begin.

Protocol specification – cont’d

struct PreFundsetupState contains
channel: Channel
turnNum: Uint
position: Position
stateCount: Uint
resolution: Outcome

end
PreFundsetupState::stateType: s 7→ PREFUNDSETUP

The PREFUNDSETUP states store two special attributes, which we call the initial
conditions of the game:

23



1. gameAttributes – the proposed initial position of the game.

2. resolution – the proposed buy-ins, specifying how much each player
should deposit in the game’s adjudicator.

The transition rules governing these states are as follows:

Protocol specification – cont’d

function validTransitionFromPreFundSetup(s1: State, s2: State)
returns (Boolean)
Require(s2.resolution == s1.resolution)
if s2.stateType == CONCLUDE then

return true
end if

if s1.stateCount == s1.nParticipants - 1 then
Require(s2.stateType == Accept)
Require(s2.stateCount == 0)
Require(s2.gameAttributes == s1.gameAttributes)

else
Require(s2.stateType == PREFUNDSETUP)
Require(s2.gameAttributes == s1.gameAttributes);
Require(s2.stateCount == s1.stateCount + 1);

end if
return true

end function

The starting player decides on some initial game attributes a0 and a resolution
r0. Each player’s PREFUNDSETUP state must have the same game attributes a0
and resolution r0.

PREFUNDSETUP states also have a stateCount attribute, which serves as a counter
to ensure that we get exactly n PREFUNDSETUP states, in the PREFUNDSETUP
round. The starting state s0 must have s0.stateCount == 0. A transi-
tion s 7→ s′ between two PREFUNDSETUP states is only valid if it increments
stateCount by 1.

For a PREFUNDSETUP state s, if s.stateCount == s.nParticipants - 1, then
it is the starting player’s turn again. As they have already agreed to the ini-
tial conditions by proposing the game, they must move to a state state s′

of type POSTFUNDSETUP. POSTFUNDSETUP states have the same attributes as
PREFUNDSETUP states. The state count must be reset to 0, and the initial con-
ditions must match s.

24



3.2.5 The POSTFUNDSETUP stage

The POSTFUNDSETUP states have similar attributes and transition rules to the
PREFUNDSETUP states:

Protocol specification – cont’d

struct PreFundsetupState contains
channel: Channel
turnNum: Uint
position: Position
stateCount: Uint
resolution: Outcome

end
PreFundsetupState::stateType: s 7→ PREFUNDSETUP

Protocol specification – cont’d

function validTransitionFromPostfundsetup(s1: State, s2:
State)

returns (Boolean)

if s2.stateType == CONCLUDE then
Require(s2.resolution == s1.resolution)

else if s1.stateCount == s1.nParticipants - 1 then
Require(s2.stateType == GAME)
Require(GameLibrary.validTransition(s1, s2))

else
Require(s2.stateType == POSTFUNDSETUP)
Require(s2.resolution == s1.resolution)
Require(s2.stateCount == s1.stateCount + 1)
Require(s2.gameAttributes == s1.gameAttributes)

end if
return true

end function

By moving to a POSTFUNDSETUP state, a player is stating that the funds are
now present and so they are happy to proceed with the game with the specified
conditions.

As per Section 3.2.4, on their second turn, the starting player may transition to
a POSTFUNDSETUP state with the same initial conditions

In this case, each player follows, signing their own POSTFUNDSETUP state s′ with
the same initial conditions. They must also increment the state count:

25



Once s.stateCount == s.nParticipants, then it is the starting player’s third
turn. As they have already committed to beginning the game under the agreed
upon conditions, the only valid transition is to a GAME state with gameAttributes
set to be a0. The GameLibraray.validTransition function is used to ensure
that the first game move represents a valid transition from the pre-agreed start-
ing state.

3.2.6 Backing out

To prevent players from being forced into unwanted positions, they always have
the option to transition to a conclude state before the GAME phase begins.

From a PREFUNDSETUP state, a rational player would conclude the game rather
than moving to a PREFUNDSETUP state if they do not wish to begin a game with
the specified initial conditions. This may be the case, for example, if the starting
game attributes a0 would put the starting player at an unfair advantage. At
this point, players could also simply ignore the game, as they haven’t yet staked
any funding on the game.4

After the PREFUNDSETUP phase has been completed, players are intended to fund
the game. It is only safe to do so in order – this ensures that they are paid out
their deposits in case of an aborted game. The starting player should move to
the POSTFUNDSETUP phase only when they see that the game is properly funded.
5

In the case where some players move through the POSTFUNDSETUP phase with-
out having funded the game, a later player may back out by moving from
POSTFUNDSETUP to CONCLUDE, rather than committing to the game.

If a player transitions from either a PREFUNDSETUP or POSTFUNDSETUP state, s,
to a CONCLUDE state, s′, we require the resolution to match.

4 ForceMove games when not collaborating

At this point, we have described how the participants advance the state by
exchanging signed moves off-chain. In this section, we cover what happens if this
cooperative behaviour breaks down. In particular, we detail how participants
can dispute on the blockchain in order to break a deadlock between them and
either progress the game or terminate it fairly.

4 No rational player would fund the game until everyone has agreed to the proposed initial
conditions. To do so requires an on-chain transaction, which may be wasted in the case that
a later player refuses to play the game.

5 In a two player game, if player 1 moves to the POSTFUNDSETUP phase before seeing that
player 2 has deposited the proper funds, player 2 can continue to play without staking any
funds, with nothing to lose.

26



4.1 Modes

Before proceeding to explain the force-move, it is useful to step back and look at
the high-level picture of the progression of a ForceMove game. As a ForceMove
game progresses, it passes through several macroscopic states, which we will
refer to as modes or modes of play.

PreFundSetup Collaborative

Concluded

Challenge

Terminated
conclude

conclusion
proof

force-move

respond expire

Figure 5: Modes of play.

The PreFundSetup mode corresponds to the PREFUNDSETUP stage described
in Section 3.2.4. The reason we separate this out as its own mode is that before
the PREFUNDSETUP round is complete, it is not possible for any player to play a
force-move. Once the last PREFUNDSETUP state has been signed and distributed,
the game enters the Collaborative mode.

In the Collaborative mode, the game progresses off-chain with the exchange of
signed moves between the participants (see Section 3.1.3). This mode includes
all the other stages (POSTFUNDSETUP, GAME, CONCLUDE) covered previously. The
Concluded mode is reached when enough CONCLUDE moves exist to construct
a conclusion proof (Section 3.2.3).

The game enters the Challenge mode when a player triggers the force-move
operation on-chain (Section 4.3). When this happens, a game timeout is set for
an on-chain response to the force-move. If no response is received within the
timeout period, the game transitions into the Terminated mode. In this mode,
no further play is possible, but the players can reclaim their funds according to
the outcome of the game.

In order to prevent the game from being terminated, some party must respond
to the force-move on-chain before the game timeout passes. If a valid response
is received, the game returns to the Collaborative mode and progress can
continue off-chain. We introduce the force-move operation and the ways to
respond to it in section 4.4.

27



4.2 The adjudicator

The purpose of the adjudicator is to both hold the players’ funds in escrow
throughout the game and to manage the dispute process. The adjudicator will
typically be a smart contract stored on a blockchain, though we do not make
this a requirement.6

In addition to holding funds in escrow and allowing players to collaboratively
conclude a game, the adjudicator must implement Interface 3.

Interface 3 Framework specification – noncollaborative interface

function forceMove(moves: Move[])
function refute(m: Move)
function respondWithMove(m: Move)
function alternativeRespondWithMove(moves: Move[])
function withdraw(channelId: Byte[], player: Address)

struct Challenge contains
endState: State
endTime: Uint

end
Challenge::inProgress: c 7→ c.endTime > now()
Challenge::terminated: c 7→ c.endTime > 0 && !c.inProgress

// The following functions are implementation dependent and not
// specified by the protocol
function setChallenge(state: State, endTime: Uint)
function getChallenge(channelId: Byte[]) returns (Challenge)
function getCurrentOutcome(channelId: Byte[]) returns (State)
function cancelChallenge(channelId: Byte[])
function challengeInProgress(channelId: Byte[]) returns
(Boolean)
function isTerminated(channelId: Byte[]) returns (Boolean)

The next few sections will explain the methods in this interface.

4.3 Playing the force-move

The force-move is a mechanism to handle an unresponsive opponent. From
the blockchain’s perspective, the force-move operation will either result in an
advance to the state of the game or in the termination of the game. In the
latter case, each participant is allowed to reclaim the “fair” proportion of their
funds.

6 For instance, an adjudicator may be counterfactually instantiated in the case of a dispute.

28



In what follows we will refer to the players in the context of the force-move: the
challenger is the participant who submits the force-move, the challengee is the
participant whose turn it is next, according to the state stored on the challenge.
Note that there’s nothing to prevent the challenger and challengee from being
the same player, though it would not ordinarily be in the player’s interest to do
this.

Informally, the force-move operation represents the challenger laying down a
challenge to the challengee. For a 2-player ForceMove game this would be along
the lines of:

Challenger: You moved mt for turn t; I moved to mt+1 for turn t+1; now you
need to provide your move for turn t+ 2.

The challenger triggers the force-move by calling the forceMove method on the
adjudicator.

Protocol specification – cont’d

function Adjudicator.forceMove(moves: Move[])
firstMove := moves[0]
channelId := firstMove.channelId
n := moves.length
Require(n == firstMove.state.nParticipants)
Require(!Adjudicator.challengeInProgress(channelId))
Require(!Adjudicator.isTerminated(channelId))
for k in 0...n− 2 do

Require(validMove(moves[k], moves[k + 1]))
end for

c := moves[n− 1]

Adjudicator.setChallenge(c, now() + defaultExpirationTime)
end function

If all of the checks pass, the adjudicator will have a challenge registered with
the challenge state and the end time set. The game will have transitioned to
the Challenge mode.

4.4 Responding to a force-move

In order to prevent a game from terminating, the opponent must respond to
the force-move operation before the game times out. There are four ways to
respond to a force-move:

• Refute the force-move.

29



• Respond with a move.

• Respond with a move from an alternative state.

• Register a conclusion proof.

We call the party who responds to the force-move the responder. This will
typically be the challengee, but it does not have to be.

In what follows, is important to note that each of these responses lead to an
increase in the turnNum from the challenge state stored in the adjudicator. This
ensures that the force-move will always advance the game from the blockchain’s
perspective. In combination with extensions discussed in Section 4.5, this pre-
vents the game from stalling indefinitely.

4.4.1 Refuting a force-move

Refuting is the action a responder takes when the challenger launched a force-
move from an outdated state. To refute a force-move the responder must demon-
strate that the state the challenger provided was not the challenger’s latest state
– in other words, they must present a state with a higher state nonce that was
signed by the challenger. Informally:

Challenger: You moved mt for turn t; I moved to mt+1 for turn t+1; now you
need to provide your move for turn t+ 2.

Responder: That was a long time ago though. You’ve since moved to mt′ for
turn t′ > t.

The responder refutes a force-move, rendering it cancelled, by calling the refute
method on the adjudicator.

Protocol specification – cont’d

function Adjudicator.refute(refutation: Move)
channelId := refutation.channelId
Require(Adjudicator.challengeInProgress(channelId))

challengeState := Adjudicator.getChallenge(channelId).state
Require(refutation.stateNonce > challengeState.stateNonce)
Require(refutation.signedBy(challengeState.mover))

Adjudicator.cancelChallenge(channelId)
end function

This case is interesting because, as explained in more detail in Section 4.5, it is
the one case where it is potentially possible to identify that the challenger was
acting in bad faith and punish them for their behaviour.

30



4.4.2 Responding with a Move

Responding with a move is arguably the action that the challenger was hoping
for when they played the force-move – their opponent was unresponsive, and
by playing the force-move, they have spurred them into action. To respond
with a move, the responder must provide a signed state that represents a valid
transition from the challenge state. Informally:

Challenger: You moved mt for turn t; I moved to mt+1 for turn t+1; now you
need to provide your move for turn t+ 2.

Responder: Ok. I’m going to move mt+2 for turn t+ 2.

In order to perform this action, the responder must make an on-chain transaction
to call the respondWithMove method on the adjudicator.

Protocol specification – cont’d

function Adjudicator.respondWithMove(response: Move)
channelId := response.channelId
Require(Adjudicator.challengeInProgress(channelId))

challengeState := Adjudicator.getChallenge(channelId).state
Require(response.signedBy(response.mover))
Require(validTransition(challengeState, response.state))

Adjudicator.cancelChallenge(channelId)
end function

In responding with a move, the responder provides the exact signed state re-
quired to progress the game. This allows the participants to continue the rest
of the game cooperatively off-chain.

4.4.3 Responding with an Alternative Move

In this response the responder provides an alternative valid sequence of n moves,
where the penultimate move has the same turnNum as the challengeMove. In-
formally:

Challenger: You moved mt for turn t; I moved to mt+1 for turn t+1; now you
need to provide your move for turn t+ 2.

Responder: But you also moved to m′t+1 at turn t + 1. I’m choosing to move
on from there instead.

In order to perform this action, the responder must make an on-chain transaction
to call the alternativeRespondWithMove method on the adjudicator.

31



Protocol specification – cont’d

function Adjudicator.alternativeRespondWithMove(moves: Move[])
channelId := moves[0].channelId
Require(Adjudicator.challengeInProgress(channelId))

challengeState := Adjudicator.getChallenge(channelId).state
n := moves.length

Require(n == challengeState.nParticipants)
for k in 0...n− 2 do

Require(validMove(moves[k], moves[k + 1]))
end for
Require(moves[n− 2].turnNum == challengeState.turnNum)

Adjudicator.cancelChallenge(channelId)
end function

Note that allowing the alternativeRespondWithMove action is an unavoidable
consequence of the rule that a player has the freedom to choose their preferred
move if there are multiple moves available to them.

4.4.4 Registering a Conclusion Proof

If the game has not been abandoned, and has ended collaboratively (i.e. a
conclusion proof exists), any player may use a conclusion proof to counteract a
force-move.

Registering a conclusion proof is done by calling the protocol’s concludemethod,
which marks the channel’s game as concluded.

Protocol specification – cont’d

function conclude(proof: ConclusionProof)
endState := proof.moves[0].state
Require(!Adjudicator.isTerminated(endState.channelId))
Require(validConclusionProof(proof))

Adjudicator.setChallenge(endState, now())
end function

Note that registering the conclusion proof causes an already-expired challenge
to be stored in the adjudicator – after the fact, a game concluded with a conclu-
sion proof behaves exactly the same as one that was terminated by an expired
challenge.

32



4.4.5 Failing to notice a force-move

The playing of a force-move and immediate transition to Challenge mode oc-
curs externally to the channel where the players are exchanging states. It is
therefore quite possible that, for example, Alice does not immediately realise
that the game is in Challenge mode and continues to play moves, as if they
were in Collaborative mode.

Thankfully, as long as Alice notices Bob’s challenge within the timeout period,
she cannot hurt her position by playing on as though still in Collaborative
mode. By playing on, by definition, she has provided at least one move that can
cancel the force move via respondWithMove or alternativeRespondWithMove
operations. If Bob also continues to play, Alice would then have the means to
cancel the force move via the refute operation (and potentially punish Bob,
depending on the protocol.) When the force-move is cancelled, all the moves
made in Collaborative still stand.

At worst, failing to notice a force-move represents a missed opportunity to move
on from a state that Alice prefers, in the case that Bob offers multiple moves.
This is no different from the off-chain cases, where Alice commits to her move
just before an alternative move arrives.

4.5 Extensions to the ForceMove protocol

As described so far, the force-move operation has a number of weaknesses:

• It is possible to grief your opponent, with a ∼1:1 griefing factor, by re-
peatedly playing the same force-move.

• Even without replaying the same force-move, it is possible to grief your
opponent, with a ∼1:1 griefing factor, by playing the force-move with a
sequence of old moves.

• It is possible for anyone who holds n consecutive states (e.g. a witness)
to grief the players by playing the force-move operation.

These weaknesses can be mitigated with the following two extensions:

• At the time of response, store the turnNum of the response state in the
adjudicator. Only allow new force-moves if their response will increase
this stored turnNum.

• Add a certificate argument to the force-move operation, to identify the
challenger and prove that they intended to play that force-move. Require
that the challenger is one of the participants.

In practice, the certificate could be the challenger’s signature of something

33



like

keccak256("forceMove:", moves). (4)

A possible alternative here would be to ensure that the caller of the forceMove
method is the challenger, but this rules out the likely-common scenario where
the players use an ephemeral set of keys (without funds for gas costs) for signing
state updates.

These extensions should probably be part of the default protocol – we only
chose to introduce them separately as they are somewhat orthogonal to the
main idea.

It is worth noting that these extensions do not completely eliminate the risk of
griefing from the force-move. In fact, this is impossible, as the following three
situations are indistinguishable from the perspective of the blockchain:

• A sends mA to B, B stalls, A calls the force-move on B to advance the
game [B at fault]

• A sends mA to B, B sends mB to A, A fails to acknowledge mB and calls
the force-move on B to grief them [A at fault]

• A sends mA to B, B sends mB but A does not receive it (e.g. due to
network issues), A calls the force-move on B to advance the game [no-one
at fault]

Adding the certificate does allow us to control the griefing factor in the case
that the force-move is refuted, by requiring a forfeitable deposit at the time a
force-move is made. For example:

• In order to play the force-move, the challenger must provide a deposit

• If the force-move is refuted, the challenger loses the deposit (and/or some
of it is transferred to the challengee)

• Otherwise, the deposit is returned to the challenger

This works as the refute case is the one case where it is clear to all that the
challenger was acting in bad faith: they either did not submit their latest state,
or they continued to play and sign updates as though the game was in Collab-
orative mode.

5 Funding ForceMove games

So far we have discussed the mechanics of ForceMove games, including how to
split the assets in the case where the game is uncooperatively terminated. In
this section we look at how the assets are deposited and assigned to the game
in the first place. We call this action funding the game.

34



Alice
Adjudicator

Bob

Game

Figure 6: Simple adjudicator.
A simple adjudicator only supports a single instance of a ForceMove state chan-
nel between a fixed set of participants.

The force-move game framework has been designed to decouple a game’s funding
from its execution. Funding happens externally to the channel and there is no
way of telling from the properties of the channel how (or even whether) the
game is funded. This allows force-move games to run within many different
frameworks that are capable of guaranteeing their funds. In this section we
will look at some different possibilities for funding force-move games. Their are
many other possible approaches beyond those discussed here.

5.1 Non-funded games

The first thing to note is that nothing in the description of force-move games
requires them to be funded. All the game mechanics work perfectly well even
if no assets are allocated to the game. Of course, if the game is not funded,
participants will not receive any funds when the game terminates: they are
playing for nothing. We also cannot reason about the incentives in the same
way.

It is always possible to avoid starting a non-funded ForceMove game by backing
out at the POSTFUNDSETUP stage (see Section 3.2.6). We will, therefore, typically
assume that any games that get to the GAME stage are funded in some way.

5.2 Simple funding

The simplest way to fund a ForceMove game is to use the Simple Adjudi-
cator – an on-chain adjudicator that supports exactly one ForceMove game.
Funds are deposited into an on-chain contract, which stores a single, hard-coded
channelId, and implements the adjudicator functionality for handling on-chain
challenges. Operations fail for all states whose channelId differs from that in
the adjudicator.

This setup is highly inefficient in terms of minimising on-chain actions and
storage, as each new game requires a new on-chain contract to be deployed and

35



Alice
Adjudicator

Bob

Ledger

Game

Game

Game

Figure 7: Ledger channel setup
An adjudicator that supports a ledger channel allows players to fund multiple
games with a single on-chain deposit. State updates in the ledger channel dictate
what proportion of the deposit funds which games.

the funds deposited can only be used for a single game, with a predefined set of
participants.

Section 6 details the design for the simple adjudicator.

5.3 Ledger channels

Ideally, a user would prefer to use a single on-chain deposit to fund multiple
state channels. A ledger channel is a state channel that serves to securely
allocate funding from single adjudicator to different games through off-chain
agreements.

In order to support funding through ledger channels, the adjudicator must be
adapted to interpret the ledger agreements and allow funds to be withdrawn
accordingly. This is a subject of current research.

5.4 Virtual channels

Virtual channels are state channels that can be constructed off-chain via existing
state channels. This approach is described comprehensively in [11].

In order to support virtual channels in a ForceMove game setting, the adju-
dicator would need to be updated so that it understands the virtual channel
agreements and allows funds to be withdrawn accordingly. This is another sub-
ject of ongoing research.

36



Alice Ingrid Bob
Adjudicator

Ledger

Game

Game

Adjudicator

Ledger

Game

Game
Virtual

Adjudicator

Ledger

Game

Game

Game

Figure 8: Virtual channels
A virtual state channel between Alice and Bob can be created through state
channels backed by an on-chain agreement between Alice and an intermediary
Ingrid, and another between Ingrid and Bob.

5.5 Withdrawal

Once the game has ended – either collaboratively via conclude, or non-collaboratively
via an ignored force-move – a game’s adjudicator should release funds for with-
drawal.

We leave the implementation of the withdraw method up to the application
developer.

Protocol specification – cont’d

function Adjudicator.withdraw(channelId, playerAddress)
Require(Adjudicator.isTerminated(channelId))
// Release mechanism unspecified

end function

6 The simple adjudicator

We limit our description of the simple adjudicator to methods and implementa-
tion details not covered by Sections 3 and 4. This means looking at the format

37



of the internal storage, the deployment of the adjudicator and depositing of
funds, and the withdrawal of funds from the adjudicator.

6.1 Internal storage

The SimpleAdjudicator has the following fields:

• channelId

• currentChallenge

The channelId stores the identity of the channel that the adjudicator supports.
The currentChallenge variable stores a Challenge object, specified in Sec-
tion 4.2, which is used to determine whether the game is in the Challenge or
Terminated mode.

Specification 4 Simple adjudicator

function Adjudicator.getChallenge(channelId: Byte[])
returns (Challenge)
Require(channelId == Adjudicator.channelId)
return Adjudicator.Challenge.state

end function

function Adjudicator.setChallenge(s: State, t: Uint)
Require(s.channelId == Adjudicator.channelId)
Adjudicator.currentChallenge := Challenge(s, t)

end function

function Adjudicator.cancelChallenge(channelId: Byte[])
Require(state.channelId == Adjudicator.channelId)
c := Adjudicator.currentChallenge
c.endTime := 0
Adjudicator.currentChallenge := c

end function

function challengeInProgress(channelId: Byte[])
returns (Boolean)
Require(channelId == Adjudicator.channelId)
return Adjudicator.currentChallenge.inProgress

end function

cont’d below

38



Simple adjudicator – cont’d

function isTerminated(channelId: Byte[])
returns (Boolean)
Require(state.channelId == Adjudicator.channelId)
return Adjudicator.currentChallenge.terminated

end function

6.2 Deployment and depositing funds

In order to deploy the simple adjudicator and safely deposit their funds the
players follow the following protocol:

1. Alice signs PREFUNDSETUP0 and sends it to Bob.

2. Bob signs PREFUNDSETUP1 and sends it to Alice.

3. Alice deploys the simple adjudicator, passing in the channelId accord-
ing to channel specified in PREFUNDSETUP0. She sends the address of the
deployed adjudicator to Bob.

4. Alice deposits aResolution, as specified by PREFUNDSETUP0.

5. Bob waits until he can verify to an acceptable level of confidence that
the adjudicator contains aResolution. It is then safe for him to deposit
bResolution.

6. Alice waits until she can verify to an acceptable level of confidence that
the adjudicator contains aResolution + bResolution. She then signs
POSTFUNDSETUP0.

7. On receiving POSTFUNDSETUP0, Bob replies with POSTFUNDSETUP1

As an optimization, Alice could combine steps 3 and 4, doing her deposit along-
side the deployment, and thus saving one on-chain transaction.

It is safe for Alice to deposit at step 4 since at this point she holds PREFUNDSETUP0
and PREFUNDSETUP1. This would allow her to recover her funds in the case where
Bob does not deposit and stalls. The resolution at this point would attempt
to give aResolution to Alice and bResolution to Bob, paying out Alice first,
allowing her to recover her funds even if Bob does not deposit.

It is safe for Bob to deposit in step 5, as he is holding PREFUNDSETUP0 and
PREFUNDSETUP1, which allows him to force-move Alice to move to either a
POSTFUNDSETUP or a CONCLUDE state. If she responds, he could then move to
CONCLUDE; if not, he can terminate the game at PREFUNDSETUP1. In either of
these cases, he can recover the bResolution he deposited.

39



6.3 Withdrawing funds

In the main ForceMove protocol specification, we touched on the transition from
the Challenge mode to Terminated but did not talk about how to recover
the assets from this states. This is because the method of recovery will depend
on the funding mechanism used.

For the simple adjudicator, the withdraw method is specified as follows. Its cor-
rectness relies on the specification of Adjudicator.setChallenge in 4.

Simple adjudicator – cont’d

function Adjudicator.withdraw(channelId: Byte[], k: Uint)
Require(channelId == Adjudicator.channelId)
Require(Adjudicator.isTerminated(channelId))
Require( 0 ≤ k && k < n )

s := Adjudicator.currentChallenge.endState
w := Adjudicator.withdrawnAmounts
r := s.resolution
pending := sum(r[i] - w[i]; i := 0; i < k; i++)
owed := r[k] - w[k]
Require(Adjudicator.balance > pending)

amount := min(owed - w[k], Adjudicator.balance - pending)
Adjudicator.withdrawnAmounts[k] += amount
participant = s.participants[k]
Adjudicator.transfer(participant, amount)

end function

Acknowledgements

We would like to thank Erik Bryn, Jeff Coleman, Liam Horne, and Li Xuanji
for introducing us to the topic and for numerous formative discussions, and
Patrick McCorry and Kristina Hostáková for their discussions and feedback on
the paper. We are also very grateful to James Fickel for supporting the project
through a personal grant and to L4 for providing follow-on funding.

References

[1] A. Hertig, “How will ethereum scale?.” https://www.coindesk.com/
information/will-ethereum-scale/.

40

https://www.coindesk.com/information/will-ethereum-scale/
https://www.coindesk.com/information/will-ethereum-scale/


[2] https://bitinfocharts.com/comparison/bitcoin-transactionfees.
html.

[3] https://blockchain.info/charts/avg-confirmation-time.

[4] 2015. https://usa.visa.com/dam/VCOM/download/corporate/media/
visa-fact-sheet-Jun2015.pdf.

[5] J. Coleman, L. Horne, and L. Xuanji, “Counterfactual: Generalized state
channels.” http://l4.ventures/papers/statechannels.pdf, 2018.

[6] T. D. Joseph Poon, “The bitcoin lightning network: Scal-
able off-chain instant payments.” https://lightning.network/
lightning-network-paper.pdf, 2016 January.

[7] https://en.bitcoin.it/wiki/Payment_channels.

[8] 2015. https://raiden.network/.

[9] A. Miller, I. Bentov, R. Kumaresan, and P. McCorry, “Sprites: Payment
channels that go faster than lightning,” CoRR, vol. abs/1702.05812, 2017.

[10] S. Dziembowski, L. Eckey, S. Faust, and D. Malinowski, “Perun: Virtual
payment hubs over cryptographic currencies.” Cryptology ePrint Archive,
Report 2017/635, 2017. https://eprint.iacr.org/2017/635.

[11] S. Dziembowski, S. Faust, and K. Hostakova, “Foundations of state channel
networks.” Cryptology ePrint Archive, Report 2018/320, 2018. https:
//eprint.iacr.org/2018/320.

[12] Wikipedia contributors, “Rock-paper-scissors — wikipedia, the free ency-
clopedia,” 2018. [Online; accessed 28-March-2018].

[13] G. Wood, “Ethereum: A secure decentralised gener-
alised transaction ledger byzantium version 71dcbdc,”
https://ethereum.github.io/yellowpaper/paper.pdf, 2018.

41

https://bitinfocharts.com/comparison/bitcoin-transactionfees.html
https://bitinfocharts.com/comparison/bitcoin-transactionfees.html
https://blockchain.info/charts/avg-confirmation-time
https://usa.visa.com/dam/VCOM/download/corporate/media/visa-fact-sheet-Jun2015.pdf
https://usa.visa.com/dam/VCOM/download/corporate/media/visa-fact-sheet-Jun2015.pdf
http://l4.ventures/papers/statechannels.pdf
https://lightning.network/lightning-network-paper.pdf
https://lightning.network/lightning-network-paper.pdf
https://en.bitcoin.it/wiki/Payment_channels
https://raiden.network/
https://eprint.iacr.org/2017/635
https://eprint.iacr.org/2018/320
https://eprint.iacr.org/2018/320

	Introduction
	State channel overview
	Disputes and resolutions
	ForceMove
	Related work
	Notation

	Informal introduction to ForceMove
	Collaborative play
	Defining game rules
	Force-move and resolution
	Responding to a force-move
	Payment channels

	ForceMove games when collaborating
	Game objects
	Game mechanics

	ForceMove games when not collaborating
	Modes
	The adjudicator
	Playing the force-move
	Responding to a force-move
	Extensions to the ForceMove protocol

	Funding ForceMove games
	Non-funded games
	Simple funding
	Ledger channels
	Virtual channels
	Withdrawal

	The simple adjudicator
	Internal storage
	Deployment and depositing funds
	Withdrawing funds


