
Nitro Protocol

Tom Close

February 24, 2019

Abstract

State channels are an important technique for scaling blockchains, al-
lowing a fixed set of participants to jointly run an application in order
to determine how a set of assets should be distributed between them.
In this paper, we present a new protocol for constructing state channel
networks, allowing state channels to be opened and closed without on-
chain transactions and decreasing the number of deposits that need to be
held. The protocol readily extends to n-party channels and we include
the construction of a 3-party virtual channel.

1 Motivation

State channels are an important technique for scaling blockchains. In a state
channel, a fixed set of participants execute a series of state transitions off-
chain, in order to determine how a set of assets should be distributed between
them. By allowing participants to execute these transitions off-chain, the state
channel removes load from the blockchain, allowing it to support the same level
of activity with fewer transactions.

The allowed state transitions are specified by a set of update rules, which can be
thought of as defining an application that runs in the state channel. When run-
ning an application in this collaborative manner, participants need guarantees
that the application will not stall indefinitely and that the transition rules will
be respected. State channels provide these guarantees by providing a challenge
mechanism, whereby participants can appeal to the blockchain to enforce these
conditions. By harnessing the blockchain, state channels become a trustless
execution environment for running multi-party applications.

The final state of the channel is used to determine how a set of assets should
be distributed. In order to ensure that these assets can only be distributed
according to the outcome of the channel, they must be held in escrow for the
duration of the channel. These assets are often referred to as the state deposit
for the channel. By ensuring that the state deposit is fully governed by the
channel’s outcome, state channels also provide a form of instant finality; once
the outcome of the channel is known the participants can consider the value to

1

have been distributed knowing that they now have the capability to claim the
assets on-chain at a future point of time of their choosing.

In the simplest case, a separate state desposit is required for each new channel.
For each application a set of participants wish to run, at least one party needs
to perform an on-chain transaction to transfer assets into the state deposit,
and each time it is closed at least one participant must perform an on-chain
transaction to claim their share. This limits the effectiveness of state channels
as a scaling solution, making it only suitable for the case where a large number
of transactions are executed between a single group of participants. We refer to
these naive channels as direct channels, as they are supported directly by funds
held on the blockchain.

State channel networks move beyond this limitation, using new types of channels
to break the direct link between state deposits and channels. Ledger channels
allow one state deposit between a fixed set of participants to support multiple
simultaneous applications between that set of participants. Virtual channels
take this one step further by allowing state deposits with a shared intermediary
to support applications between a set of participants who have no state deposit
between themselves.

1.1 Our contribution

In this paper we present Nitro Protocol, a protocol for constructing state channel
networks. We give a detailed description of how to construct ledger channels
and virtual channels, including how to safely open and close these channels
entirely off-chain. Taken with our earlier work on ForceMove [1], this paper
gives a complete specification for building a state channel network capable of
running arbitrary state channel applications.

Our work is unique in that the channels in our networks are both homogeneous
and independent. By homogeneous, we mean that channels function exactly the
same whether they are direct channels or whether they are funded via a ledger
channel or virtual channel; in particular, there are no time limits or other re-
strictions placed on the applications that run in virtual channels. Channels can
even transition from virtual channels to direct channels while an application is
running, without affecting the application’s execution in any way. By indepen-
dent, we mean that updates to different channels are unrelated. We have no
way of applying atomic updates across multiple channels, nor do we have need
to do this. The independence of channel updates makes it far easier to reason
about the incentives involved in designing state channel applications, as with
independence you can reason about whether updates will be accepted on a per
channel basis.

All the work in this paper is generalizable to n-party channels and, by way of
example, we include the first explicit construction of a virtual channel between
3 parties with a shared intermediary. Other examples include utility protocols
for tasks such as top-ups and partial withdrawals from ledger channels.

2

We also develop a set of tools for reasoning about the correctness of the protocols
we present.

2 Existing work

There are many examples of state channels and off-chain scaling projects. In
this section we limit ourselves to a review of published work on the subject of
off-chain payment and state channel networks.

The Lightning network [2], which went live in March 2018, provides off-chain
payments for the Bitcoin blockchain. The payments make use of hashed time-
locked contracts (HTLCs), which can be thought of as payments that are con-
ditional on a hash pre-image being revealed before a given point in time. This
construction allows payments to be routed through an arbitrary number of inter-
mediaries but is strictly limited to payments. The Raiden network [3] provides
the same functionality for the Ethereum blockchain and launched on the main-
net in December 2018.

Celer Network [4] proposes a state channel construction that extends HTLCs to
allow payments that are conditional on the outcome of an arbitrary calculation.
The outcome of the calculation can specify the amount of funds that move,
as well as whether the payments should go through at all. The paper gives a
high-level justification of how the construction yields state channels capable of
running arbitrary state machine transitions.

Perun [5, 6] proposed a different flavour of state channel construction, viewing
state channels as a direct interaction between two parties instead of a series
of conditional payments. This makes it very clear that state channel updates
themselves need only be shared between the participants in the channel, and do
not need to be routed through a network. The authors specify a virtual channel
construction, allowing two-party channels to be supported through intermedi-
aries, and prove its correctness using the UC framework. The proof relies on
the fact that their virtual channels have a pre-determined validity time, after
which the channel must be settled.

Counterfactual [7] gives a state channel construction using the technique of
counterfactual instantiation, a form of logic that reasons about constructions
that could be deployed to the chain if required. The channels they describe are
n-party and they give a high-level overview of how to construct ‘meta-channels’
that allow channels to be supported through intermediaries. While the paper
itself does not specify the details of how to construct meta-channels, many of
these details can be found in their publicly released source code.

3

3 Modelling State Channel Networks

In this section, we present a simple model for state channel networks. The model
is intended to be easy to understand and reason about, while still capturing
the essential features. It will form the basis for the protocols introduced later
in the paper, as well as for the tools used to prove the correctness of those
protocols.

3.1 A System of Balances

At the heart of our model lies a simple system of balances. We start by describ-
ing that system.

In this paper, we simplify the explanation by only considering a single asset,
which we will refer to as coins. We will further simplify matters by specifying
that quantities of coins will have no maximum size, taking values in Z+. This
allows us to avoid dealing with integer overflows when presenting operations.
These simplifications do not cause any limitations in practice and all the work
here can be applied to state channel networks that manage an arbitrary number
of asset types with maximum values.

In order to store value, a state channel network must be backed by assets held
on-chain. In our explanation, we assume that these funds are held and managed
by a single1 smart contract, which we will refer to as the adjudicator.

The first purpose of the adjudicator is to store the balance of coins held for a
given address. Addresses can correspond either to participants in the network
or to state channels. A participant address is a regular blockchain address,
generated in the standard way from the signature scheme. A channel address
is formed by taking the hash of the participant addresses along with a nonce, k,
that is chosen by the participants in order to distinguish their channels from one
another. Given an address, A, we assume that the properties of the signature
scheme and hashing algorithm make it impossible to find a private key for A or to
construct a channel whose address is A, if they are not previously known.

We model the adjudicator as having a simple mapping that stores the quantity
of coins for an address. If an address does not appear in the table we take the
balance to be zero. Figure 1 introduces the notation we will use to describe the
system.

The deposit operation, DA(x), is an on-chain operation used to increase A’s
balance by x coins. There are no restrictions on who can deposit coins for an
address, but the transaction must always include a transfer of x coins into the
adjudicator.

The withdrawal operation, WA(x), can be used to withdraw coins held at
participant address, A, by any party with the knowledge of the corresponding

1We assume this for simplicity only - in practice the functionality could be split across
multiple contracts.

4

Adjudicator
Address Balance

Bob 5
Alice 2

JBob : 5, Alice : 2K

Bob Alice

5 2

on-chain view channel notation outcome diagram

Figure 1: Three different ways of representing the situation where Bob has 5
coins stored against his address in the adjudicator and Alice has 2. The on-chain
view shows a pictorial representation of the state in the adjudicator. Channel
notation is useful for writing the state in equations and will later be extended
to cover off-chain state as well. In the outcome diagram, the white squares
represent adjudicator balances and the solid circles are coloured to represent the
different participants.

private key. In practice, the withdrawal should also specify the blockchain
address where the funds should be sent. A potential method signature is
withdraw(fromAddr, toAddr, amount, signature), where signature is A’s
signature of the other parameters2.

Adjudicator
Address Balance

Bob 5

Adjudicator
Address Balance

Bob 5
Alice 4

Adjudicator
Address Balance

Bob 2
Alice 4

JBob : 5K JBob : 5, Alice : 4K JBob : 2, Alice : 4K

Bob

5

Bob Alice

5 4

Bob Alice

2 4

DAlice(4) WBob(3)

Figure 2: Deposits and withdrawals. The deposit can be called by any
blockchain user, provided that it is accompanied with a transfer of the same
number of coins into the adjudicator. For the withdrawal to be successful, the
withdrawal parameters must be signed with Bob’s private key.

To recap, we now have a simple smart contract that can store a balance against
an address, which either represents a participant or a channel. The balances

2In practice, we could add the senderAddress to the parameters to sign, in order to prevent
replay attacks by other parties.

5

can be increased and decreased through deposits and withdrawals. Anyone
can deposit into an address of either type3 but funds can only be withdrawn
from participant addresses - and only by a party who knows the private key.
The total coins held by the smart contract should always equal the sum of the
balances.

3.2 State Channel Outcomes

In our model, a state channel is an off-chain protocol followed by a set of par-
ticipants, enabling them to reach an outcome that can be used to update the
balances on the chain. The format and interpretation of the outcome is spec-
ified by the state channel network protocol being used. An example of a type
of outcome is the allocation, which is used in both Turbo and Nitro protocol,
and which consists of a list of recipient addresses and totals that specify how
the channel’s balance should be distributed.

Adjudicator
Address Balance Outcome

L 5 A: 1, B: 2
L′ 6
L′′ A: 3, B: 4

JL : 5 7→ (A : 1, B : 2), L′ : 6, L′′ 7→ (A : 3, B : 4)K

L

5

A B

1 2 L′

6

L′′

A B

3 4

Figure 3: Representation of (allocation) outcomes in the three different di-
agram formats. We show the three possible cases: a channel, L, with both a
balance and an outcome; a channel, L′, with a balance but no outcome; and a
channel, L′′, with an outcome but no balance. We represent the channels with
split circles, coloured to represent the participants of the channel, which we have
taken to be A and B.

Central to the approach of the model is to split the updating of the balances
into two steps:

1. Finalization: getting to a point where the outcome of the channel is
stored on the blockchain.

2. Redistribution: updating the balances in the adjudicator according to
that outcome.

The bulk of this paper is focussed on the redistribution step, which we will
discuss further in section 3.3.

3But there is nothing to be gained from depositing into a participant address.

6

Understanding how an outcome is finalized inevitably involves understanding
the rules of operation of the state channel: from exchanging states to launching
and responding to challenges. The ForceMove protocol completely specifies
these rules of operation, in a way that is compatible with the work in this
paper.

Setup Running Concluded

Challenge Finalized

register

force-move

respond

timeout

Figure 4: ForceMove Channel Operation. There are two ways for an out-
come to become finalized: (i) through a challenge that times out before anyone
responds, and (ii) through the registration of a conclusion proof.

In ForceMove, there are two ways for an outcome to be finalized. The first corre-
sponds to a non-collaborative closing of the channel: one participant launches an
on-chain challenge, starting a timeout period; if no other participant responds
during the timeout period, then the challenge times out and the outcome cor-
responding to the challenge state is finalized. The second corresponds to a
collaborative closing of the channel: all the participants sign a special conclude
state, called a conclusion proof; any participant can then register this outcome
on-chain to create a finalized outcome. By closing the channel collaboratively
the participants avoid having to wait for the challenge period.

For the purpose of the model, it is crucial that the rules of operation only allow
one outcome to be finalized for each channel. As we will see in section 4, it
is also important that the rules of operation make it possible to know which
outcome(s) a participant can finalize from a given state.

3.3 Redistribution

The second part of extracting the funds from a state channel is the redistribution
step. Redistribution involves calling a sequence of on-chain operations to
manipulate the balances and finalized outcomes. The allowed operations are
defined by the network protocol used. Figure 5 shows an example of the transfer
operation from Turbo protocol.

The operations change the state of the adjudicator: typically both balances
and outcomes. There is no restriction on who can trigger the operations. In
this paper, we present all operations separately and assume they are called
separately. In practice, we expect that implementations would provide some
utility methods that combine common sequences of operations, to improve gas
efficiency.

7

Adjudicator
Address Balance Outcome

L 5 Bob: 2, Alice: 3
Bob 4

Adjudicator
Address Balance Outcome

L 2 Bob: 2
Bob 4
Alice 3

T(L,Alice, 3)

JL : 5 7→ (Bob : 2,Alice : 3), Bob : 4K JL : 5 7→ (Bob : 2), Bob : 4, Alice : 3K

Bob

4

L

Bob Alice

5

2 3 Bob

4

L

Bob

5

2 Alice

3

Figure 5: A example of a redistribution operation from Turbo protocol. Here
the transfer operation is used to move 3 coins out of channel L to Alice. Note:
the parts of the adjudicator responsible for storing challenges are omitted from
the diagram.

To recap, we now have a system where participants can deposit into state chan-
nel addresses on-chain. By running a state channel, participants can reach an
outcome and ensure this outcome is finalized on-chain. Once the outcome is fi-
nalized, the funds held in the channel can be redistributed to other participants
and channels by calling on-chain operations. Participants can then withdraw
any funds that have been redistributed to their address.

In the next section, we will use this model to develop some tools for constructing
state channel networks and proving their safety. In particular, we will develop
the logic which allows us to use the fact that a given outcome could be finalized
if necessary, to avoid putting that outcome on-chain at all.

4 Reasoning about State Channels

In this section, we outline our approach to proving the correctness of our state
channel network constructions.

The very nature of state channels tends to make the logic complex. In a state
channel, value is moved between participants by exchanging commitments about
the distribution of assets held on-chain. Inevitably you end up reasoning about
the commitments you hold and their interpretation by the chain, which nec-
essarily also includes reasoning about the possible actions of the other parties
both internal and external to the channel.

8

On top of this, there is an inherent danger in entering into a state channel
relationship, as it requires funds to be locked on-chain. In order to be safe,
protocols need to be robust against other parties acting maliciously and/or
ceasing to cooperate at any point in the protocol. We need to show that at any
point, any participant can extract the value currently owed to them in spite of
any actions taken by other parties.

4.1 Channel Funding and Value

We will start by considering the interpretation of the outcome of a state channel.
Suppose A is a participant in a state channel, L, that reaches an (allocation) out-
come, ω, that allocates x coins to A. What does that mean for A? In particular,
how much more can A withdraw from the system due to that outcome?

L

A B

3 4
+ . . .

A

3?
+ . . .

Figure 6: Understanding whether a channel is funded amounts to understand-
ing how much value can be extracted from the system when that channel reaches
an outcome.

There is one case where the answer to these questions is very straightforward:
where the channel L itself has enough coins in the adjudicator to cover the
entire allocation. In this case, we say the channel is directly funded. If this
happens, A will receive all x coins allocated to them in ω.

L

7

L

A B

3 4

L

A B

7

3 4 A

3

L

B

4

4
≡

Figure 7: Direct funding. One case where we know we can extract the full
value allocated to us in a channel outcome, is when the channel has a sufficient
balance in the adjudicator to cover the full allocation.

This is a good start, but the whole point of state channel networks is to move
beyond the case where every channel needs to be directly funded. Suppose
instead that L is not directly funded but there is another channel, L′, that
is. Further suppose that L′ has reached an outcome where all its coins are

9

allocated to L. Using this outcome, we know we can redistribute the coins
in the adjudicator to L, recreating the situation above, where L was directly
funded. Therefore, in this situation we also know that A will receive the x coins
from the outcome of L, and that L can be considered to be indirectly funded.
Note that we did not actually need to perform the redistribution on-chain to
reach this conclusion - we just needed to be able to reason that the outcome
enabled us to.

L′ L′

L

7

7

L′

L

7

7
L

7≡

Figure 8: Indirect funding. If we possess another outcome, that allocates funds
to L, we know we can convert this to a situation where L is directly funded. We
can therefore consider L to be indirectly funded.

In the previous paragraph, we looked at the case where L′ had already reached
an outcome. In general, this will not be the case; the power of state channels
comes from the ability to move between many potential outcomes as the inter-
action progresses. In order to say whether a channel is funded, we will need to
start not with an outcome but with a network state. The network state, Σ,
for a participant, A, consists of:

1. The state of the adjudicator:

(a) The balances held

(b) Any finalized outcomes

2. For each channel A is a partipicant of:

(a) Signed commitments that A has received

(b) Signed commitments that A has sent

(c) Private information held by A

The private information always includes A’s signing key for the channel and can
also include information specific to the application running in the channel; for
example, in a game of battleships the private information would include the posi-
tions of A’s ships. Note that A’s network state does not include a detailed model
of which commitments are held by specific other participants - just what A has
sent and received. Generally we assume that all other participants are controlled
by a single adversary, pooling their resources and commitments.

We can now proceed with some definitions of funding and value:

10

L′
7 Σ L′

L

7

7
L

7

Figure 9: In practice, we deal with a network state, Σ, and not in definite
outcomes. To understand value, we also need to be able to reason about which
outcome(s) could result from the current network state, as well as the value those
outcomes then deliver.

A channel χ is funded for participant A with x coins, if A has an unbeatable
strategy for obtaining a state where χ is directly funded with x coins.

The value for participant A of a network state Σ is the maximum x for which
A has an unbeatable strategy for obtaining a state where the balance of A’s
address in the adjudicator is x coins.

The concept of an unbeatable strategy can involve a full range of actions allowed
within the protocol including signing commitments, refusing to sign commit-
ments, launching/responding to on-chain challenges and calling on-chain op-
erations to redistribute funds. We will cover this in more detail in section
4.3.

4.2 Network Constructions

Now that we have defined what we mean by a channel being funded and a state
having value, we can start to talk about the state channel network constructions
that will form the bulk of the paper. A construction specifies both the network
state for each participant and a sequence of states that can be used to reach it.
Presenting a construction will follow the same rough pattern:

1. Show that a given network state funds a channel.

2. Show it can be built from a known state, using a sequence of value-
preserving single channel updates.

The single channel update requirement is a key decision in the design the proto-
col. This means that we do not allow atomic updates across multiple channels;
each update to the system comprises sending or receiving a single statement
applying to just one channel. This keeps channel updates independent, which
makes it a lot easier to reason about finalizability on a per-channel basis.

We require that the sequence of state transitions is value preserving for each
participants involved. While the power of state channel networks comes from
being able to move value off-chain, opening and closing channels can be viewed
as rewriting the existing state in a different form and therefore should not

11

change the value. We furthermore make the assumption that participants will
be willing to make any transition that preserves their value, meaning that value-
preservation is both a necessary and sufficient property for constructing network
states. We call this last assumption the Simple Transition Rule.

In the case where we ignore the cost of the on-chain redistribution operations,
the simple transition rule is straightforward and non-controversial. If we con-
sider this cost, the situation becomes a bit more subtle, as moving from a
simpler to a more complicated construction actually leads to a slight decrease
the value that is extractable from the network. In practice, using the simple
transition rule means we are assuming that the utility from being able to fund
channels off-chain will outweigh the slight increase in cost in the worst-case sce-
nario. Modelling the cost of the on-chain operations is beyond the scope of this
paper.

4.3 Unbeatable Strategies

In the definitions of value and funding, we talked about having an unbeatable
strategy for obtaining some state on-chain. The means that whatever actions
(or lack of actions) other participants and external parties might take, the target
state is still obtainable. This is not the easiest definition to work with: to show
that a strategy is unbeatable it seems that you have to consider all possible
actions other parties could take. In this section, we will break this down and
give some tools to make it easier to show that a strategy is unbeatable.

We start by outlining the rules for interacting with the blockchain. When eval-
uating whether a strategy is unbeatable, we make the following assumptions
about blockchain transactions:

1. Transactions are unimpeded: given that the current time is t and
ε > 0, then it is possible for any party to apply any operation, O, on-
chain before time t+ ε.

2. Transactions can be front-run: given two parties, p1 and p2, and two
operations, O1 and O2, there is no way for p1 to ensure that they can
apply O1 to the chain before p2 applies O2.

The first assumption sidesteps issues of censorship, chain congestion and timing
considerations around the creation of blocks. In practice, this assumption should
hold if ε is sufficiently large, which can be accomplished by picking sensible
channel timeouts. The second assumption rules out any strategies that rely on
executing a given transaction on-chain before someone else executes a different
one.

We now take the task of constructing an unbeatable strategy and break it into
two stages: finalization and redistribution.

Finalization happens on a per-channel basis, with different channels finalizing
independently. This makes it easier to reason about which outcomes are possi-

12

ble. In general, we cannot assume that the outcome will be known; we might
have to take multiple possible outcomes through to the redistribution step. The

Σ

L

A B

7

3 4

L

A
L′

A B

7

2 5

1 4

A

3

Figure 10: When calculating value, we will often need to consider all outcomes
that are possible from a given network state and show that they all allow us to
extract the same value from the network.

finalization step depends heavily on the rules of the state channel framework.
We will cover finalization in more detail in section 4.4.

Reasoning about when a redistribution strategy is unbeatable, depends heav-
ily on the protocol involved. We will cover the logic here in the sections on
Turbo and Nitro protocol. In Turbo, it turns out that the answer is simple:
any strategy that works is unbeatable. In Nitro, it is more complicated to
show that redistribution strategies are unbeatable but we provide a few tools to
help.

4.4 Finalizable Outcomes

We say an outcome, Ω, is finalizable for participant A, if A has an unbeatable
strategy for finalizing this outcome in the adjudicator. We use the notation
[χ 7→ Ω]A, to represent a state of a channel, χ, where the outcome, Ω, is
finalizable by A.

[χ 7→ Ω]A
A’s unbeatable strategy−−−−−−−−−−−−−−−→ Jχ 7→ ΩK (1)

It follows from the definition that exactly one of the following statements is true
about a channel χ at any point in time:

13

1. Finalized outcome: the outcome of χ has already been finalized on-chain:
Jχ 7→ ΩK

2. One participant has multiple finalizable outcomes: participant p has one
or more finalizable outcome(s), Ω1, . . . ,Ωm, and no other participant has
any finalizable outcomes. We write this [χ 7→ Ω1, . . . ,Ωm]p.

3. Multiple participants share one finalizable outcome: there are at least two
participants, P = {p1, . . . , pm}, who share the same finalizable outcome,
Ω. We write this [χ 7→ Ω]p1,...,pm .

4. No finalizable outcomes: there are no participants with any finalizable
outcomes.

The definition of finalizability excludes the case where two different finalizable
outcomes are held by different participants, as in this case at least one partici-
pant’s strategy would be beatable by the other participant’s strategy. None of
the protocols we present make use of the last case, where no participant has a
finalizable outcome.

n states

PreFundSetup

n states

PostFundSetup

arbitrary number of states

Running

n states

Concluding

Funding point Concluded

Figure 11: Every ForceMove channel has at least two points when the outcome
is universally finalizable: one at the funding point and one when the channel
has concluded. This is important when reasoning about creating state channel
network constructions.

In the special case where the outcome of a channel is finalizable by all its partic-
ipants, we say that the outcome is universally finalizable. For a ForceMove
channel, this happens at the following points in its lifecycle:

1. After the first n states have been broadcast. In this state, we say the
channel is at the funding point.

2. When a single conclusion proof is known to each participant. In this state,
we say the channel is in the concluded state.

It is an important property of ForceMove that all channels have one universally
finalizable state at the beginning of their lifecycle and one at the end4.

If a participant has no finalizable outcomes, their analysis of the network needs
to be performed in terms of their enabled outcomes. The enabled outcomes
for a participant, p, is defined as the set of outcomes that p has no strategy

4If a channel does not end with a conclusion proof, it ends with an expired on-chain
challenge, in which case the outcome is already finalized on-chain.

14

to prevent from being finalized. We write the set of enabled outcomes for p as
[χ 7→ Ω1 . . .Ωm](p).

For any participant, p, in a channel, χ, exactly one of the following statements
is true at a given point in time:

1. p has at least one finalizable outcome.

2. p has at least two enabled outcomes.

Note that if a participant has only enabled a single outcome, that outcome must
be finalizable for them.

4.5 Consensus Game

Another important example of universally finalizable states comes from the con-
sensus game. The consensus game is a ForceMove application, which means
it specifies a certain set of transitions rules that can be used to define the al-
lowed state transitions for a ForceMove channel. We will make heavy use of the
consensus game throughout the paper.

The consensus game provides a way for participants to move from one universally
finalizable outcome to another, provided that they all agree. The participants
start in a state where Ω1 is the universally finalizable outcome. One participant
proposes the new outcome, Ω2. On their turn, each subsequent participant
decides whether to accept the transition to the new outcome or whether to
cancel the transition and return to Ω1.

Ω1 (Ω1,Ω2, 1) (Ω1,Ω2, 2) (Ω1,Ω2, n− 1) Ω2

Figure 12: A consensus game transition from Ω1 to Ω2, for a channel with
n participants. The counter records how many participants have approved the
transition. If all participants agree, they finish in a state with outcome Ω2. Any
participant can reject the transition, returning to the state with Ω1.

Throughout the only enabled outcomes for any participant are Ω1 and Ω2.
In particular, a participant has the finalizable outcome [χ 7→ Ω1]p until they
approve the transition, and then enabled outcomes [χ 7→ Ω1,Ω2](p) until they
receive the final state. When the final state is broadcast, every participant has
the finalizable outcome [χ 7→ Ω2]p.

15

4.6 Outcomes First

In practice, it is hard to write networks states down concisely. Instead, we
will write our constructions in terms of outcomes and use the properties of the
consensus game to reason that (a) network states exist that lead to this outcome
and (b) we can find a sequence of network states to transition from one outcome
to another.

In particular, we will present sequences of sets of outcomes, where each set
differs only in the outcome of a single consensus game channel. Each of the
outcomes will have the same value to all participants. We then know that,
using the properties of the consensus game, we can transition between these
two states with a consensus game transition, without enabling any additional
outcomes.

To show that we can build a construction, it is therefore sufficient to present
the sequence of sets of equal-value outcomes, where each set differs only in the
outcome of a single consensus game channel. This is the approach we will take
in the rest of the paper.

L

A B

3 4

L

A B

7

3 4

L

7

L

A B

7

6 1 A B

6 1

(a) (b) (c) (d) (e)

Figure 13: In (a), A and B have exchanged the first two states in the channel
L, bringing them to the funding point. At this point the channel is not yet
funded. In step (b), both participants have deposited into the adjudicator. In
step (c), the channel L is running. A and B do not have a finalizable outcome
and the ultimate outcome is governed by the rules given by the channel’s game
library. In step (d), A and B have created a conclusion proof and therefore
have another universally finalizable outcome. They are then able to finalize this
outcome on-chain and withdraw their funds in (e).

5 Turbo Protocol

Turbo protocol has one type of outcome (the allocation) and one on-chain op-
eration (the transfer). You will already be somewhat familiar with these, as
they formed the basis of the examples in sections 3 and 4. In this section we
will make these more precise, present the related result on distribution and give
some example constructions to cover common tasks such as opening and closing
sub-channels.

16

5.1 Allocations and Transfer

An allocation is a list of pairs of addresses and totals, (a1:v1, . . . , am:vm),
where each total, vi, represents that quantity of coins due to each address, ai.
We assume that each address only appears once in the allocation and require
that implementations enforce this by ignoring any additional entries for a given
address after the first.

The allocation is in priority order, so that if the channel does not hold enough
funds to pay all the coins that are due, then the addresses at the beginning of
the allocation will receive funds first. We say that ‘A can afford x for B’, if
B would receive at least x coins, were the coins currently held by A to be paid
out in priority order.

L

B A

5

4 3 B

4

A

1

L

A

2

T(L,B, 4) T(L,A, 1)

Figure 14: Allocations pay out in priority order. In the diagram, B is drawn
to the left of A to show that B has higher priority in the outcome of L. In this
example, L can afford 4 coins for B, but can only afford 1 coin for A.

Turbo introduces the transfer operation, T(A,B, x), to trigger the on-chain
transfer of funds according to an allocation. If A can afford x for B, then
T(A,B, x):

1. Reduces the funds held in channel A by x.

2. Increases the funds held by B by x.

3. Reduces the amount owed to B in the outcome of A by x.

If A cannot afford x for B, then T(A,B, x) fails, leaving the on-chain state
unchanged.

5.2 Unbeatable Redistribution

As we mentioned in section 4.3, reasoning about redistribution is easy in Turbo:
if you can find one strategy to move a certain amount into an address, then
no-one else can prevent this from occurring. In this section we will justify this
by presenting an algorithm for calculating the funding for each address.

We will restrict ourselves to looking at strategies and counter-strategies involv-
ing transfer operations only, ignoring deposits and withdrawals. Deposits and
withdrawals cannot be required as part of a strategy and cannot help as part of

17

a counter-strategy. The intuition here is that a deposit into the system cannot
reduce the value of any address and cannot increase the value of any address by
more than the value of the deposit. Withdrawals can only occur from partici-
pant addresses and are the only way funds can leave these addresses, so cannot
affect values elsewhere.

We will only consider the case where the network of outcomes forms a directed
acyclic graph (DAG), where the nodes are channels and the edges represent
allocations from one channel to the other. While it is technically possible to
create outcomes with cycles, it is also possible for any participant in the chan-
nel to prevent this from happening. We therefore consider non-DAG outcome
networks to be outside the scope of the protocol.

We commence our value calculation by taking a topological ordering of the nodes
of the graph. A topological ordering is an ordering of nodes such that, if N1 7→
N2 is an edge, then N1 < N2. It is a known result that all DAGs have at least
one topological ordering.

L

A B

χ

7

3 1 6

A B

2 4

1 L

2 χ

7

6

3

A

4

B

2 4

3
1

1 7 L

2 3 χ

7

6

3 5

A

4 2

B

2 4

3
1

(a) (b) (c)

Figure 15: Diagram (a) shows the outcome network that is the input to the
value calculation. In (b), we have reformulated (a) as a DAG with uniquely
labelled nodes by merging the two A and B nodes. We have also labelled the
nodes with a topological ordering. In (c), we have completed the algorithm giving
each node its funding/value.

Turbo Value Algorithm

1. Choose a topological ordering, OrderedNodes, for the network.

2. Create a mapping, Values, from OrderedNodes to Z+. Initialize this map-
ping by setting Values[n] to be the balance held for n in the adjudicator,
for each n ∈ OrderedNodes (with Values[n] = 0 if n’s address does not
appear).

3. For each n ∈ OrderedNodes[n] (taken in order):

(a) Let remainingFunds = Values[n].

18

(b) For each (destinationNode, payout) in n’s allocation (taken in or-
der):

i. Let x = min(payout, remainingFunds).

ii. Increase Values[destinationNode] by x.

iii. Decrease remainingFunds by x.

4. Then Values[n] gives the value of node n.

It is not hard to see that it is impossible to find a strategy that gives any node a
value higher than allocated by this algorithm. It is also not hard to construct a
strategy for a node to obtain the value allocated by the algorithm, if necessary
by actually implementing the algorithm up until that node. Given that we
are only considering counter-strategies with transfers, and we have done every
possible transfer on these channels, we know that there are no transfers that
can interrupt this algorithm. It is also easy to see that calling transfers out of
order does not affect the ultimate result.

In Turbo, it is therefore easy to calculate the value of each node and find un-
beatable strategies for extracting the value of that address.

5.3 Ledger Channels

A ledger channel is a channel whose sole purpose is to provide funding to
other channels. We call the channels that are funded by the ledger channel
sub-channels of the ledger channel. All ledger channels run the consensus
game.

Although this has already been covered, for completeness we will quickly recap
how a sub-channel can be considered to be funded by a ledger channel. For
example, consider the following setup where a ledger channel, L, allocates the
funds it holds to participants A and B and channel χ:

JL : 10K, [L 7→ (A : 3, B : 1, χ : 6)]A,B (2)

In this example, χ is funded with 6 coins by L for both A and B. To show this,
we have to have an unbeatable strategy for moving to a situation where χ is
directly funded with 6 coins. To do this we first note that the outcome (A : 3, B :
1, χ : 6) is finalizable for both A and B, so we can start our strategy by putting
this outcome on-chain. Once it is on-chain, the transfer operation T(L, χ, 6) is
all that is required to make χ directly funded. From the Turbo redistribution
result, we know that this redistribution strategy is unbeatable.

Note that offloading χ like this should be seen as an action of last-resort, as after
the off-load all sub-channels supported by L must be closed on-chain. It is in the
interest of both participants to open and close sub-channels collaboratively. We
next give some examples to show how this can be accomplished safely.

19

L

A B

χ

10

3 1 6

L

A B

4

3 1 χ

6
T(L, χ, 6)

Figure 16: Offloading a ledger channel. The transfer operation is used to move
funds out of the ledger channel L into channel χ, so that χ becomes directly
funded.

5.4 Example Constructions

We now give some examples of how to work with ledger channels on Turbo. We
have chosen to present examples that demonstrate the key principles instead of
presenting general protocols, as we believe that, once seen, these protocols are
easy to extend to the general case.

5.4.1 Opening a Sub-channel

L

A B

10

5 5
L

A B

χ

10

5 5

A B

2 4

L

A B

χ

10

3 1 6

A B

2 4

L

A B χ

10

3 1 6

Figure 17: Opening a sub-channel.

The utility of a ledger channel derives from the ability to open and close
sub-channels without on-chain operations. Here we show how to open a sub-
channel.

1. Start in a state where A and B have a funded ledger channel, L, open:

JL : xK, [L 7→ (A : a,B : b)]A,B (3)

2. A and B prepare their sub-channel χ and progress it to the funding point.
With a′ ≤ a and b′ ≤ b:

[χ 7→ (A : a′, B : b′)]A,B (4)

20

3. Update the ledger channel to fund the sub-channel:

[L 7→ (A : a− a′, B : b− b′, χ : a′ + b′)]A,B (5)

5.4.2 Closing a Sub-channel

L

A B χ

10

3 1 6
L

A B

χ

10

3 1 6

A B

5 1

L

A B

10

8 2

Figure 18: Closing a sub-channel.

When the interaction in a sub-channel, χ, has finished we need a safe way to
update the ledger channels to incorporate the outcome. This allows the sub-
channel to be defunded and closed off-chain.

1. We start in the state where χ is funded via the ledger channel, L. With
x = a+ b+ c:

JL : xK, [L 7→ (A : a,B : b, χ : c)]A,B (6)

2. The next step is for A and B to conclude channel χ, leaving the channel
in the conclude state. Assuming a′ + b′ = c:

[χ 7→ (A : a′, B : b′)]A,B (7)

3. The participants then update the ledger channel to include the result of
channel χ.

[L 7→ (A : a+ a′, B : b+ b′)]A,B (8)

4. Now the sub-channel χ has been defunded, it can be safely discarded.

5.4.3 Topping Up a Ledger Channel

Here we show how a participant can increase their funds held in a ledger channel
by depositing into it. They can do this without disturbing any sub-channels
supported by the ledger channel.

21

L

A B χ

10

7 1 2

L

A χ B

10

7 2 6

L

A χ B

15

7 2 6

L

A B χ

15

7 6 2

Figure 19: Topping up a ledger channel.

1. In this process A wants to deposit an additional a′ coins into the ledger
channel L. We start in the state where L contains balances for A and B,
as well as funding a sub-channel, χ. With x = a+ b+ c:

JL : xK, [L 7→ (A : a,B : b, χ : c)]A,B (9)

2. To prepare for the deposit the participants update the state to move A’s
entry to the end, simultaneously increasing A’s total. This is a safe opera-
tion due to the precedence rules: as the channel is currently underfunded
A would still only receive a if the outcome went to chain.

[L 7→ (B : b, χ : c, A : a+ a′)]A,B (10)

3. It is now safe for A to deposit into the channel on-chain:

DL(a′)JL : xK = JL : x+ a′K (11)

4. Finally, if required, the participants can reorder the state again:

[L 7→ (A : a+ a′, B : b, χ : c)]A,B (12)

5.4.4 Partial Withdrawal from a Ledger Channel

A partial checkout is the opposite of a top up: one participant has excess funds
in the ledger channel that they wish to withdraw on-chain. The participants
want to do this without disturbing any sub-channels supported by the ledger
channels.

1. We start with a ledger channel, L, that A wants to withdraw a′ coins from:

JL : xK, [L 7→ (A : a+ a′, B : b, χ : c)]A,B (13)

2. The participants start by preparing a new ledger channel, L′, whose state
reflects the situation they want to be in after A has withdrawn their coins.
This is safe to do as this channel is currently unfunded.

[L′ 7→ (A : a,B : b, χ : c)]A,B (14)

22

L

A B χ

10

7 1 2

L

A B χ

10

7
1

2 L′3

1
2

L

A A B χ

10

4

6
L′

3 1 2
A

4

A B χ

6

L′

3 1 2

Figure 20: Partial withdrawal from a ledger channel.

3. They then update L to fund L′ alongside the coins that A wants to with-
draw. They conclude the channel in this state:

[L 7→ (L′ : a+ b+ c, A : a′)]A,B (15)

4. They then finalize the outcome of L on-chain. This can be done without
waiting the timeout, assuming they both signed the conclusion proof in
the previous step:

JL : x 7→ (L′ : a+ b+ c, A : a′)K (16)

5. A can then call the transfer operation to get their coins under their control.

T(L,A, a′)JL : x 7→ (L : a+ b+ c, A : a′)K =

JL : x− a′ 7→ (L′ : a+ b+ c), A : aK (17)

6. At any point in the future the remaining coins can be transferred to L′:

T(L,L′, a+ b+ c)JL : x 7→ (L : a+ b+ c), A : a′K =

JL′ : a+ b+ c, A : a′K (18)

Note that A was able to withdraw their funds instantly, without having to wait
for the channel timeout.

6 Nitro Protocol

Nitro protocol is an extension to Turbo protocol. In Nitro protocol, the outcome
of a channel can be either an allocation or a guarantee. There are two on-chain
redistribution operations: the transfer and the claim.

Nitro enables true state channel networks by allowing virtual channels, where
channels are routed through intermediaries. In particular, the extra features

23

of Nitro allow virtual channels to be safely opened and closed off-chain while
maintaining the property that channels update independently5.

6.1 Guarantees and Claims

In the section on Turbo, we introduced allocations which defined a set of des-
tinations and totals owed to them, along with a priority order in which the
destinations should receive their funds. In Nitro, we allow for these two con-
cerns to be split between different types of channels, with one type of channel
providing the destinations and totals and another type of channel specifying the
priority order. This opens up the possibility of having more than one priority
order for the same allocation.

The new type of channels are called guarantee channels and their outcomes
are known as guarantees. A guarantee targets an allocation, while specifying
a different priority order to pay out to the destinations. The funds held in a
guarantee channel can only be paid out once the outcome of the target channel
is finalized.

Adjudicator
Address Balance Outcome

G 3 (L|B)
L A: 2, B: 3

JG : 3 7→ (L|B), L 7→ (A : 2, B : 3)K

G

L

A B

3

2 3

Figure 21: Guarantee notation. The guarantee outcome of G is written (L|B),
where L is the allocation it targets and B is an address to be prioritized first.
When targeted by a guarantee we draw the allocation, L, as a lower semicircle.
The guarantee, G, is drawn as an upper semicircle. The lines between G and L
depict the reprioritization, showing that the highest priority position of G (on
the bottom left of the semicircle) will pay out to B.

The format for specifying the priority order of a guarantee channels is compli-
cated by the fact that we may not know the precise outcome or even the precise
set of destinations at the time the guarantee is created. Because of this we need
to enable the guarantee to apply a range of outcomes. To do this, the guarantee
provides a list of addresses, with the rule that these addresses will be moved to
the top of the priority order if they appear in the outcome. For example, if we
have the guarantee (L|A,B,C) and the outcome of L is (C : 1, D : 2, A : 4), then
the guarantee will pay out as though the outcome was (A : 4, C : 1, D : 2).

5It is possible to implement virtual channels in Turbo but only by breaking the constraint
that channels update independently. We believe this constraint will be important when run-
ning large scale state channel networks.

24

Extending the terminology for allocations, we say that a guarantee ‘G can
afford x for B’, if B would receive at least x coins, were the coins currently
held by G to be paid out according to G’s prioritization of its target.

Adjudicator
Address Balance Outcome

G 3 (L|Alice)
L Bob: 2, Alice: 3

Adjudicator
Address Balance Outcome

G (L|Alice)
L Bob: 2

Alice 3

C(G,Alice, 3)

JG : 3 7→ (L|Alice), L 7→ (Bob : 2,Alice : 3)K JG 7→ (L|Alice), L 7→ (Bob : 2), Alice : 3K

G

L

Bob Alice

3

2 3

G

L

Bob

2

Alice

3

Figure 22: The claim operation is used to move funds out of a guarantee. Note
that in diagram notation, we update the reprioritization lines to reflect the new
outcome: after the claim, L only allocates to Bob, so there is only one line from
G to L.

Nitro adds the claim operation, C(G,A, x), to the existing transfer, deposit and
withdraw operations. If G acts as guarantee for L and can afford x for A, then
C(G,A, x) has the following three effects:

• Reduces the funds held in channel G by x.

• Increases the funds held in channel A by x.

• Reduces the amount owed to A in the outcome of L by x.

Otherwise, the claim operation has no effect.

6.2 Redistributing

Reasoning about redistribution in Nitro is more complicated than in Turbo. For
a start, it is possible to construct situations where the same outcome can lead
to different values, depending on the order in which guarantees are claimed.
Figure 23 shows one of these situations.

Despite this issue, it is still possible to make some statements about redis-
tribution in Nitro, in particular putting some lower bounds on how funds are
distributed. For example, in the example in figure 23 one thing we can definitely

25

I BA

5 5

5
5

5

G1 G2

J
I

BA

5 5

5 5

G1

G2

J
I B

A

5 5

5

G1 G2

J

Figure 23: Guarantee claim ordering problem. In the diagram both G1 and G2

guarantee J ’s outcome with I as first priority but with different second priorities.
If G1 is claimed first, then when G2 is claimed the funds go to B. If G2 is claimed
first (not shown), then when G1 is claimed the funds go to A. Whether A or B
ultimately gets paid depends on the order that the guarantees are claimed.

say is that participant I will receive their 5 coins, even though we cannot say
anything about how the remaining 5 coins will be distributed between A and
B. These lower bounds prove to be enough to handle the constructions used in
the rest of the chapter.

Nitro Lower-bound Value Algorithm

We can calculate this lower bound with a modification the Turbo Value Algo-
rithm:

1. Choose a topological ordering, OrderedNodes, for the network.

2. Create a mapping, Values, from OrderedNodes to Z+. Initialize this map-
ping by setting Values[n] to be the balance held for n in the adjudicator,
for each n ∈ OrderedNodes (with Values[n] = 0 if n’s address does not
appear).

3. For each n ∈ OrderedNodes[n] (taken in order):

(a) If n is a guarantee channel, do nothing.

(b) Otherwise, n is an allocation channel:

i. Run the Minimum Payout Calculation on n and the guarantees
that target it, to calculate the minimum payouts, MinPayouts,
for each of destination channels.

ii. For each destination, d, increase Value[d] by MinPayouts[d].

4. Then Values[n] gives the value of node n.

Note that by taking the minimum independently on different allocation/guar-
antee groupings, we end up with an algorithm that strictly underestimates the

26

actual value in some cases. This is not the case for any of the constructions
presented in this paper.

Minimum Payout Calculation

In this calculation we will consider an allocation channel, L, whose outcome
allocates a1 . . . am to destination addresses D1 . . . Dm, and a set of guaran-
tees G1 . . . Gn which target L. We want to calculate the minimum payout,
pi, that each destination will receive when all possible payout orders are con-
sidered.

Each guarantee, Gi, induces a permutation πi on the destination addresses, so
that Gi prioritizes the outcomes in the order Dπi(1) . . . Dπi(m).

We start in a state where the values of channel L and the guarantees are known,
with Gi having value vi = Value[Gi]. We will assume the value of L itself is
0. We are free to do this because, if Value[L] = x > 0, then for the purpose of
running the algorithm we can write the problem in an equivalent way, by adding
a guarantee Gn+1 that has value x, that targets L and that has πn+1(k) =
k.

If
∑
vi >

∑
aj , then we say the system is overfunded. In this case, we know that

all destinations will receive their allocations, so pi = ai regardless of the order
of payout. Otherwise, we let pij > 0 be the amount paid out from guarantee Gi
to destination Dj and introduce the following set of constraints to ensure that
we only consider situations where no funds are left in the guarantees:∑

j

pij = vi (19)

It is useful to introduce the deficit, δj > 0, for the destination Dj , defined by
the equations:

δj +
∑
i

pij = aj (20)

Finally we can write down the set of constraints that encode the priority order
of the guarantees:

piπj(2) > 0⇒ δπj(1) = 0

piπj(3) > 0⇒ δπj(2) = δπj(1) = 0

...

piπj(m) > 0⇒ δπj(m−1) = · · · = δπj(1) = 0

(21)

Note that we can rewrite these constraints in product form, e.g. piπj(3)(δπj(2) +
δπj(1)) = 0, making it clear that they are non-linear.

We can then calculate pi = ai − δ∗i , where δ∗i is found by minimising δi subject
to these constraints.

27

In general, calculating the minimimum payout therefore involves solving a con-
strained optimization problem, with non-linear constraints. In practice, for all
the calculations required for the constructions in this paper, it is sufficient to
look at two special cases: (i) when the allocation is fully funded and (ii) when
there is only a single guarantee. In the fully funded case, where

∑
vi =

∑
ai, it

is easy to see that pi = ai, just as in the overfunded case. In the single guarantee
case, the payouts are fully determined, so it is easy to calculate the minimum
payout.

6.3 Virtual Channels

A virtual channel is a channel between two participants who do not have a shared
on-chain deposit, supported through an intermediary. We will now give the
construction for the simplest possible virtual channel, between A and B through
a shared intermediary, I. Our starting point for this channel is a pair of ledger
channels, L and L′, with participants {A, I} and {B, I} respectively.

JL : x, L′ : xK, [L 7→ (A : a, I : b)]A,I , [L′ 7→ (B : b, I : a)]B,I (22)

where x = a+ b. The participants want to use the existing deposits and ledger
channels to fund a virtual channel, χ, with x coins.

In order to do this the participants will need three additional channels: a joint
allocation channel, J , with participants {A,B, I} and two guarantor channels
G and G′ which target J . The setup is shown in figure 24.

JL : x, L′ : xK

[L 7→ (G : x)]A,I [L′ 7→ (G′ : x)]B,I

[G 7→ (J |χ,A, I)]A,I [G′ 7→ (J |χ,B, I)]B,I

[J 7→ (χ : x, I : x)]A,B,I

L L′

χ I

10 10

10 10

10 10

Figure 24: Virtual channel construction.

We will cover the steps for safely setting up this construction in section 6.5.
In the next section, we will explain why this construction can be considered to
fund the channel χ.

28

6.4 Offloading Virtual Channels

Similarly to the method for ledger channel construction, we will show that
the virtual channel construction funds χ by demonstrating how any one of the
participants can offload the channel χ, thereby converting it to an on-chain
channel that holds its own funds.

We will first consider the case where A wishes to offload χ. A proceeds as
follows:

1. A starts by finalizing all their finalizable outcomes on-chain:

JL : x 7→ (G : x), L′ : x,G 7→ (J |χ,A, I), J 7→ (χ : x, I : x)K (23)

Although A has the power to finalize L, G and J , they are not able to
finalize L′. Thankfully, this does not prevent them from offloading χ.

2. A then calls T(L,G, x) to move the funds from L to G:

JL′ : x,G : x 7→ (J |χ,A, I), J 7→ (χ : x, I : x)K (24)

3. Finally A calls C(G,A, χ) to move the funds from G to χ.

JL′ : x,G 7→ (J |χ,A, I), J 7→ (I : x), χ : xK (25)

As G has χ as top priority, the operation is successful.

By symmetry, the previous case also covers the case where B wants to offload.
The final case to consider is the one where I wants to offload the channel and
reclaim their funds. This is important to ensure that A and B cannot lock I’s
funds indefinitely in the channel.

1. I starts by finalizing all their finalizable outcomes on-chain:

JL : x 7→ (G : x), L′ : x 7→ (G′ : x), G 7→ (J |χ,A, I),

G′ 7→ (J |χ,B, I), J 7→ (χ : x, I : x)K (26)

2. I then transfers funds from the ledger channels to the virtual channels by
calling T(L,G, x) and T(L′, G′, x):

JG : x 7→ (J |χ,A, I), G′ : x 7→ (J |χ,B, I), J 7→ (χ : x, I : x)K (27)

3. Then I claims on one of the guarantees, e.g. C(G,χ, x) to offload χ:

JG 7→ (J |χ,A, I), G′ : x 7→ (J |χ,B, I), J 7→ (I : x), χ : xK (28)

4. After which, I can recover their funds by claiming on the other guarantee,
C(G′, I, x):

JG 7→ (J |χ,A, I), G′ 7→ (J |χ,B, I), χ : x, I : xK (29)

29

Note that I has to claim on both guarantees, offloading χ before being able
to reclaim their funds. The virtual channel became a direct channel and the
intermediary was able to recover their collateral.

6.5 Examples

In this section we present a sequence of network states written in terms of
universally finalizable outcomes, where each state differs from the previous state
only in one channel.

6.5.1 Opening a Virtual Channel

10 10

5 5 5 5

5 5 10

10 10

5 510

5 5 10

10 10

10 10

5 5 10

10 10

10 10

10 10

Figure 25: Opening a virtual channel

The procedure for opening a virtual channel is as follows:

1. Start in the state given in equation (22):

JL : x, L′ : xK (30)

[L 7→ (A : a, I : b)]A,I (31)

[L′ 7→ (B : b, I : a)]B,I (32)

2. A and B bring their channel χ to the funding point:

[χ 7→ (A : a,B : b)]A,B (33)

3. In any order, A, B and I setup the virtual channel construction:

[J 7→ (A : a,B : b, I : x)]A,B,I (34)

[G 7→ (J |χ,A, I)]A,I (35)

[G′ 7→ (J |χ,B, I)]B,I (36)

4. In either order switch the ledger channels over to fund the guarantees:

[L 7→ (G : x)]A,I (37)

[L′ 7→ (G′ : x)]B,I (38)

30

5. Switch J over to fund χ:

[J 7→ (χ : x, I : x)]A,B,I (39)

We give a visual representation of this procedure in figure 25.

6.5.2 Closing a Virtual Channel

10 10

10 10

10 10

2 8

82 10

8 2

2 10

8 2 2 8

Figure 26: Closing a virtual channel

The same sequence of states, when taken in reverse, can be used to close a
virtual channel:

1. Participants A and B finalize χ by signing a conclusion proof:

[χ 7→ (A : a′, B : b′)]A,B (40)

2. A and B sign an update to J to take account of the outcome of χ. I will
accept this update, provided that their allocation of x coins remains the
same:

[J 7→ (A : a′, B : b′, I : x)]A,B,I (41)

3. In either order switch the ledger channels to absorb the outcome of J ,
defunding the guarantor channels in the process:

[L 7→ (A : a′, I : b′)]A,I (42)

[L′ 7→ (B : b′, I : a′)]B,I (43)

4. The channels χ, J , G and G′ are now all defunded, so can be discarded.

It is also possible to do top-ups and partial checkouts from a virtual chan-
nel.

31

6.5.3 Virtual Channel with Three Participants

So far we have primarily focussed on channels with two participants. The tech-
niques here all generalise to n-participant channels. In figure 27, we give an
example construction for a virtual channel between three participants. The
opening and closing of this channel follows the same pattern as the two partic-
ipant case.

JL : x, L′ : x, L′′ : xK

[L 7→ (G : x)]A,I [L′ 7→ (G′ : x)]B,I [L′′ 7→ (G′′ : x)]C,I

[G 7→ (J |χ,A, I)]A,I [G′ 7→ (J |χ,B, I)]B,I [G′′ 7→ (J |χ,B, I)]C,I

[J 7→ (χ : x, I : x)]A,B,C,I

[χ 7→ (A : a,B : b, C : c)]A,B,C

Figure 27: Virtual channel with three participants. Here x = a+ b+ c.

7 Conclusion

In this paper, we have presented a protocol to allow the construction of state
channel networks. The channels in these networks operate independently from
one another and follow the same rules of operation regardless of whether they
are funded directly or via other channels. The examples we have given make
it clear how to open and close channels off-chain, while also performing many
operations that are important in the practical operation of these channels, such
as top-ups and partial withdrawals.

By splitting the extraction of value from a state channel into finalization and
redistribution, we have provided an approach for reasoning about the correctness
of state channels that can be applied beyond the constructions presented in this
paper. For both of the protocols we present, we have provided algorithms to
calculate the value obtainable, allowing for the creation of software to automate
these calculations.

Acknowledgments

I would like to thank James Prestwich, Andrew Stewart and Chris Buckland
for multiple discusssions which helped shape the work in this paper. George
Knee, Kristina Hostakova and Lisa Eckley all provided important feedback on
the draft, resulting in multiple improvements to the paper. This work is funded
through an Ethereum Foundation Grant.

32

References

[1] T. Close and A. Stewart, “Force-move games.” https://magmo.com/

force-move-games.pdf, 2018.

[2] T. D. Joseph Poon, “The bitcoin lightning network: Scal-
able off-chain instant payments.” https://lightning.network/

lightning-network-paper.pdf, 2016 January.

[3] 2015. https://raiden.network/.

[4] ScaleSphere Foundation Ltd., “Celer network: Bring internet
scale to every blockchain.” https://www.celer.network/doc/

CelerNetwork-Whitepaper.pdf, 2018.

[5] S. Dziembowski, L. Eckey, S. Faust, and D. Malinowski, “Perun: Virtual
payment hubs over cryptographic currencies.” Cryptology ePrint Archive,
Report 2017/635, 2017. https://eprint.iacr.org/2017/635.

[6] S. Dziembowski, S. Faust, and K. Hostakova, “Foundations of state channel
networks.” Cryptology ePrint Archive, Report 2018/320, 2018. https://

eprint.iacr.org/2018/320.

[7] J. Coleman, L. Horne, and L. Xuanji, “Counterfactual: Generalized state
channels.” http://l4.ventures/papers/statechannels.pdf, 2018.

33

